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2 3 . 1 □ I N T R O D U C T I O N

The first three chapters in this section on multivariable control retained the propor
tional-integral-derivative (PID) control algorithm. This approach is generally pre
ferred for its simplicity when it provides good performance, which is often the
case. However, some especially challenging process control objectives are diffi
cult or impossible to achieve using multiloop PID control. In this chapter, one
centralized method for controlling multiple input-output processes is introduced.
The term centralized denotes a control algorithm that uses all (process input and
output) measurements simultaneously to determine the values of all manipulated
variables. In contrast, multiloop control, also called decentralized control, involves
many algorithms, with each using only one process output variable to determine the
value of one manipulated variable. Further discussions on the need for centralized
control are presented in Cutler and Perry (1983) and Prett and Garcia (1988).

In addition to all measurements, centralized controllers use a dynamic model
of the process in the control calculation. The most common approach to using a
model explicitly in the control calculation is the model predictive control structure
described in Chapter 19. Since the discussions in this chapter are based on an
understanding of the model predictive structure, the reader is advised to review
Chapter 19 thoroughly before proceeding with this chapter.

This chapter begins with a straightforward extension of the model predictive
controller to a multivariable system. This extension demonstrates the limitations
in applying the analytical model inverse, which was easily determined for single-
variable systems, to the multivariable case. Then, one approach to determining a
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controller design using numerical methods to obtain good dynamic performance
is presented, first for single-variable and subsequently for multivariable systems.
In this chapter, the digital algorithm is presented, because of the clarity and ease
of implementation of this form. The presentation of the new control algorithm is
concluded with discussions on implementation guidelines and extensions.

23.2 □ MULTIVARIABLE MODEL PREDICTIVE CONTROL
Model predictive control was introduced in Chapter 19, where some important
properties were demonstrated for single-loop systems. The same principles can be
applied to a multivariable system. For example, the following properties can be
shown to hold for the general (open-loop stable) system in Figure 23.1.

1. The controlled variables will return to their set points for steplike inputs if

Gcp(0) = [Gm(0)]
- l (23.1)

Thus, the steady-state gain matrix of the controller must be the same as the
inverse of the steady-state process model. Again, this can be achieved easily,
because the engineer selects both of these elements in the control system. Note
that the model does not have to match the plant exactly, although large model
mismatch can degrade performance and lead to instability.

2. Perfect control (i.e., zero deviation from set point) is achieved when

Gcp(*) = [GM(j)]- (23.2)

D(5)

SPis) ^9 T.(f)
Gmis)•cp

MV(j)

Gds)

GDis)

Gds)
In general, the variables are vectors, e.g.,

CV,(5)
CV2(5)

CV(*) =

CVnc(j)_
The transfer functions are matrices of appropriate dimensions, e.g.,

Gis) _\Guis) G12(j)1" |G21(s) G22(*)J

with Gyis) relating input; to output i.

FIGURE 23.1

Model predictive control structure.
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Even if possible, this might involve excessive variability in the manipulated
variable and thus not be desirable in practice.

3. If the model (and process) contains noninvertible elements, an approximation
to equation (23.2) can be used to determine the controller, as follows:

'cPis) = [G~is)]
- i

Gmis) = GUs)G-is)

(23.3)

(23.4)
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with Gtis)

G~is)

The "noninvertible" factor has an inverse that is not causal
or is unstable. The inverse of this term includes
predictions, e9s, and unstable poles, 1/(1 + rs), x < 0,
appearing in [Gm(^)]_1. The steady-state gain of this
factor must be the identity matrix.
The "invertible" factor has an inverse that is causal and
stable, leading to a realizable, stable controller. The
steady-state gain of this factor is the gain matrix of the
process model, K,„.

For single-variable systems, the design of the controller Gcpis) was relatively
straightforward. However, the application of this analytical approach to multivari
able systems encounters a significant barrier, as demonstrated in the following
example.
EXAMPLE 23.1.
A multivariable predictive controller is to be applied to the binary distillation tower
considered throughout the book. The product compositions are to be controlled
by adjusting the reflux and reboiler; thus, the energy balance regulatory control
strategy provides the base control on which the composition control will be imple
mented. This approach, which shows the multivariable controller as an upper-level
component in a cascade design, is given in Figure 23.2.

The model for the process is given in equation (21.1) and is repeated here:

[£]-
r 0.0747g~35 -0.0667e-2v 1

\2s + l
0.1173g-335

15s+ 1
-o.nssg-25 m+

O.lOe- 5 s - i

14.4s + 1
1.3g-35

L 125 + 1 J

(23.5)

L 11.75^ + 1 10.25 + 1 J
This two-variable system would be represented in the general symbols of Figure
23.1 as

+ Gd\
Gdii

is)]
is) ]

Dis) (23.6)CV,(s) I \Gxxis) Gxds) MVxis)
|_CV2(s)J [G2lis) G22(5)J|_MV2(s)

By applying equation (23.2) the predictive controller is evaluated by determining
the inverse of the feedback model.

[Gm(s)rl =

r -0A253e~2s 0.0667*-*
1 10.25 + 1

-0.1173g-3-3*
L 11.755 + 1

155+1
0.00782e-5-3* 0.00936e"5v 0.0747g"3s

(155 + 1)(11.755 + 1) (125 + 1)(10.25 + 1) 125+1
(23.7)

The model in equation (23.5) cannot be factored uniquely into an invertible part.
Also, the control performance of a control system that would satisfy equations
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Relative volatility 2.4
Number of trays 17
Feed tray 9
Analyzer dead times 2 min
Feed light key xF = 0.50
Distillate light key Xd = 0.98 mole fraction
Bottoms light key xB = 0.02 mole fraction
Feed flow FF = 10.0 kgmole/min
Reflux flow Fr = 8.53 kgmole/min
Distillate flow FD = 5.0 kgmole/min
Reboiler flow Fv = 13.53 kgmole/min
Tray holdup H = l.Okgmole
Holdup in drums HD = 10.0 kg mole

FIGURE 23.2

Centralized multivariable distillation control.

(23.1) and (23.3) is not easily related to the analytical method of obtaining the
invertible factor G~(5).

Thus, the analytical algorithm design method in equations (23.1) through
(23.4) will not be used for multivariable systems in this chapter, although
the model predictive structure will be retained.

The distillation example will be reconsidered after an alternative controller algo
rithm has been developed.

23 .3 ® AN ALTERNATIVE DYNAMIC MODELLING APPROACH

The previous section demonstrated that a new approach to designing the model
predictive algorithm is needed. Fortunately, several approaches have been devel
oped, and one of these will be presented in the next section. However, the new
method requires dynamic models in a format different from the standard transfer
functions used to this point. The requisite modelling is described in this section us
ing the symbols X for input and Y for output. This convention is used because these
models can represent the input-output behavior for various variable combinations;
for example, X could represent a disturbance or a manipulated variable.

Throughout the book, transfer function models have been determined from
fundamental modelling and empirical identification. These transfer functions are
very useful in representing the dynamic input-output behavior of linear (or lin
earized) elements in a control system. They are parsimonious, in that the entire



dynamic response can be represented by a small number of parameters. Also, their
analytical structure enables the engineer to perform many transformations and
calculations easily. However, alternative model structures are possible. For exam
ple, a dynamic model can be represented by the two forms in Table 23.1. This is
the model of a single-tank mixing process with transportation delay used for PID
tuning studies in Section 9.3, and it will be used in examples later in this chapter.

The example transfer function considered here is first-order with dead time,
but more complex equations are common and can be modelled using this approach.
An alternative model form is the step response, which is a set of discrete values
representing the output response to a unit step input; these values are often referred
to as the step weights. The transfer function gives a continuous model of the process,
whereas the step response gives no information at times between the sampled points
and has the same values as the continuous model at the sample points. The step
response can be developed from the transfer function by solving for the output
response of the continuous system to a unit (+1) step input at sample number 0.
For the example first-order-with-dead-time system, the discrete form is

K e~6sYis) = f^—*(,) =ixs + 1) sirs + 1) [note Xis) = AX/s = \/s] (23.8)

Y'it) = (1.0)Kpi\ - e-{ '-6)) i t > 6) (23.9)
This continuous model can be evaluated at sample points by setting time equal to
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TABLE 23.1

Transfer function with its step
response model

Transfer function

Yis)/Xis) = Kpe~6s/ixs + \)
= 1.0g-57(55 + l)

Step response

Sample Time
k t X ' i t ) Y ' i t )=ak

0 0 1 0.
1 2 . 5 1 0.
2 5 1 0.
3 7 . 5 1 0.394
4 1 0 1 0.632
5 1 2 . 5 1 0.777
6 1 5 1 0.865
7 1 7 . 5 1 0.918
8 20 0.950
9 22.5 0.970

10 25 0.982
11 2 7 . 5 1 0.989

^ u
do ^

FB»FA
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multiples of the sample period, At. In the following equations the subscripts m
emphasize that the transfer function parameters refer to the model, which is only
an approximate representation of the true plant.

Time Sample no. Input X' Output Y'
0 0 1 0
At 1 1 0
2At 2 1 0

{continues until the dead time}
®m O J A t 1 0

em + At i$m + At)/At 1 Kdl -e-*"*" )
em + 2 At iOm+2At ) /A t 1

: 1
Km(l-g-2A,/r»')

The reader can verify that this method was used to develop the step weights from
the transfer function in Table 23.1 by calculating the step response from an initial
steady state of Y' = 0. The step response model can be used to calculate the value
of the output Y' at any sample period k in response to a step of any size AX using
the equation

Y^ = akAXQ (23.10)
Recall that the transfer function used in developing the step response can be derived
from fundamental models using methods from Chapters 3 through 5, or it can be
developed from empirical data using methods from Chapter 6.
EXAMPLE 23.2.
Determine two models for the data in Figure 23.3: a transfer function model and a
discrete step model.

The continuous transfer functions can be determined using the methods de
scribed in Chapter 6. This data was used in Examples 6.2 and 6.6, where it was
concluded that a first-order-with-dead-time structure was adequate. For example,
the parameters determined in Example 6.6 using the statistical parameter method
are Km = 2.56°C/% open, 0m - 3.66 min, and xm = 5.2 min.

The discrete step response can also be determined from the data. One ap
proach would be to use the measured values of the output variables as the step
response; this approach would use the data indicated by the circles in Figure 23.3.
While this represents the process behavior exactly for this experiment, the data
includes noise, which would not be repeatable and should not be used for design
ing or tuning controllers. A better method for determining the step response would
characterize the repeatable process response and ignore the higher-frequency
noise. There are many methods for evaluating a step model from noisy data; one
good method uses conventional modelling methods (for example, those in Chap
ter 6) to fit a transfer function model and subsequently evaluate the step response
using the transfer function. This approach is demonstrated in Figure 23.3, where
the dashed line is the continuous output from the transfer function model and the
crosses are the step response from the estimated model, not the raw data. This
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FIGURE 23.3

Process reaction data with continuous and discrete models.

modelling approach captures the dominant dynamic behavior while eliminating
the effects of most of the noise. Further discussions of determining representative
step response models from empirical data are given in MacGregor et al. (1991),
Cutler and Yocum (1991), and Ricker (1988).
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The step response model can be used to predict the dynamics of a system for
any input function of time. This is achieved by sampling the input function and
recognizing that it can be approximated by step changes at each sample point.
The effect on the output of each input step is represented by the step response in
equation (23.10). The overall effect of all of the input steps is the sum of each
individual effect, assuming that the system is linear. This modelling method intro
duces potential errors, because the input may not be a perfect staircase function;
however, the errors will be small if the sample period is short compared with the
rate of change of the input and output variables. Assuming that the plant begins
at a steady-state condition (Fo), the step weights can be used to predict the output
from the input values at the sample points as follows:

Yx=Y0 + axAX0
Y2 = Y0 + a2AX0 + axAXx (23.11)
Y3 = Yo + a3AX0+a2AXx +fl]AX2

and so forth. This model can be expressed as an equation for any number of sample
periods k for a single-input-single-output system as follows:

Jt+i
Y k + ] = Y 0 + J 2 a J * X k - j + x ( 2 3 . 1 2 )

j = \
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Applying the model in equation (23.12) for a long time (/: -> large) would result
in a sum over a very large number of samples, since every change in the past
influences the current value of the output variable. We anticipate that such a large
summation would cause difficulties for the controller calculation. However, the
input changes have a constant effect as the time from the input step becomes large;
that is, after the transient settles to the constant effect for a past AX. Thus, the
model in equation (23.12) can be rewritten to give the following equation.

Y k + i = Yo (23.13)
* + l L L

+ ^2 aj&Xk-j+x+Y^aJAXk-j+i
j = L L + l j = \

I n i t i a l R e a c h e d T r a n s i e n t
cond i t i on s teady s ta te response

The last term on the right-hand side includes those past inputs whose effects have
not yet reached their steady-state values. Thus, the number of samples multiplied
by the period should be the settling time of the process; for example, LLAr is
approximately equal to the dead time plus four time constants for a first-order-
with-dead-time process. The second term on the right-hand side involves the inputs
whose effects have (essentially) reached their steady state, so that a^ % Kp for
k > LL. It is not necessary to sum all of the values in the second term at each
time step, because the summation only changes by one value each sample period:
by 1 past AX. Thus, this can be calculated recursively using a new intermediate
variable Y* to include the initial value of Y and the effects of all AX values whose
effects have reached steady state. (Recall that a recursive calculation uses only the
past result and the new input to calculate the new result.)

y; = /-;_,+aLL+1Ax*_LL
LL

r*+1 = r; + £>yAx*_;+1 (23.14)

The approximation of the step response with its steady-state (or final) value
introduces another potential error, which can be made small by proper choice of
the number of steps (LL) to include in the summation in equation (23.13). Now
the large sum of the steady-state effects has been eliminated by the recursive form
of the model.

The step response model in equation (23.14) does not require all past inputs to
be stored and the large summation to be calculated each execution: the informa
tion about initial condition and inputs whose effects have reached steady state are
accumulated in the Y* term.

The modelling approach described in this section can be applied to most
single input-single output responses; it cannot be applied to unstable processes,
for which Y* (all past effects that have reached steady state) does not exist. Because
only discrete samples of the response are used, the step response model is not
as complete a representation as a continuous transfer function model. However,
the discrete step response model facilitates the design of centralized feedback
controllers, as explained in the next section.



23.4 a THE SINGLE-VARIABLE DYNAMIC MATRIX CONTROL
(DMC) ALGORITHM
Several approaches can be used to develop a practical multivariable centralized
controller. The method presented here is the dynamic matrix controller, which
was developed by Cutler (Cutler and Ramaker, 1979), was extended to include
additional features (Prett and Gillette, 1979; Garcia and Morshedi, 1986), and
has been applied successfully to complex processes (e.g., Kelly et al., 1988; Van
Hoof et al., 1989). The dynamic matrix control algorithm can be implemented
within the model predictive control structure, and the algorithm can be designed
without determining the analytical inverse of the process model, so the extension to
multivariable systems is straightforward. The DMC algorithm will be introduced
here for the single-variable case and then will be extended to multivariable. This
explanation will proceed in three steps, each introducing a key aspect of the overall
algorithm.
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Basic DMC Algorithm (without Feedback)
The algorithm will be introduced by considering the situation encountered every
time a model predictive feedback controller is executed. The dynamic response of
a feedback control system is shown in Figure 23.4. The manipulated variable has
been adjusted in the past, and the controlled variable has been influenced by these
adjustments, as well as by disturbances. The prediction of the controlled variable,
calculated using equations (23.14) and past values of the manipulated variable, is
also shown in the figure. The task of the control algorithm is to determine future
adjustments to the manipulated variable that will result in the predicted controlled
variable returning quickly to the set point.

To determine the best controller moves, a measure of control performance must
be selected. Here, the integral of the error squared, or the sum of the error squared
at sample points, will be taken; we recognize that this measure is not complete, and
we will modify it later to consider robustness and the behavior of the manipulated
variable. The error—deviation between set point and controlled variable—can
be measured at the current time, but we know that it will change in the future
because of recent adjustments to the manipulated variable. The behavior of the
controlled variable without adjustments in the future should be used to determine
the future error, which should be reduced by future adjustments. Thus, the DMC
controller uses a dynamic model of the process to calculate the future behavior of
the controlled variable that would occur without future control adjustments.

LL

CV{ = CV*K +J2aJ+iAMVK-j Note: Without feedback (23.15)
j = \

with CVf = predicted (deviation) value of the controlled variable in the
future as influenced by past changes in the manipulated
variable

CV*K = predicted value of the controlled variable at the current
time based on all past inputs up to K— LL

i = sample periods in the future (i = 1 to NN)
The difference between the predicted values of the controlled variable and the set
point are used to calculate the objective, the sum of the errors squared, which is to
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i c- i = 0 j=MM / = NN

CV calculated using | i
values of past AM Vs

AMVs in past are known

Recent AMVs influence
future CV transient

-I" C-

EJ, the error that would occur without
future adjustments in the MV

Future AMVs are calculated by the controller
to minimize its objective function

k = K

L_
jfc = 0 Jt = A"-LL

Past samples

FIGURE 23.4

Dynamic response of variables for DMC control.

Time

Current time, controller executed here

be minimized.
N N 2 N N 2

OBJDMc = Ĵ  [SP< " <&*( + CV?)] = E [E( ~ CVi\ (23-16)
« = i « = i

where SP/ = set point at each sample i in the future
CV{ = defined in equation (23.15) and cannot be influenced by the

controller
CV? = effect of future adjustments on the controlled variable at each

sample /
E; = (SP/ - CV/"), deviation from set point that would occur if no

future control adjustment were made
NN = future time over which the control performance is evaluated,

termed the output horizon
In equation (23.16), the set point can remain constant at its current value in the
future, but if it will vary in the future in a manner known when the controller is
executed, a variable set point can be accommodated. Also, the future effects of past
adjustments, CVf, are calculated using equation (23.15). Thus, only the terms CVf
are influenced by the future adjustments determined by the controller algorithm.
Finally, the output horizon (NN) should be long enough for the controlled variable
to approach steady state under closed-loop control.



Now, the challenge is to determine the future adjustments in the manipulated
variables to minimize the objective. This is an optimization problem that could
be solved by many methods, including searching over a large grid of possible
values of the manipulated adjustments, but that would involve wasteful, excessive
calculations. An efficient controller calculation method can be developed using the
modelling approach introduced in the previous section. The step response model
can be used to calculate the effects of future moves, by summing their effects.

CV? ,v-v/+i
i+i

= X>AMvy_y+1 (23.17)
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where CVC = effects of future adjustments in the manipulated variable on
the controlled variable

AMVC = future adjustments calculated by the controller

This model can be slightly rearranged to ease the optimization calculation. The
same result can be obtained with the summation over all inputs at each sample /
of the horizon by ensuring that the effects are zero for all adjustments occurring
after the sample at which the controlled variable is evaluated (/). This model can
be expressed in matrix format as follows, using the step weights aj that can be
nonzero (where i > j) and 0.0 for the elements that must be zero (where i < j).

ax 0 0
a2 ax 0
o-i a2 ax

- «nn Ann- i «nn-2 ffNN-MM+l -1

AMVJ "
- cvf -

AMVf cv̂
amvs; = cvc3

MVMM_! - -cvcm.
(23.18)

In this formulation, the adjustments in the manipulated variable could be allowed
for all samples in the output horizon; however, experience indicates that this can
lead to overly aggressive control action and oscillatory dynamic responses. There
fore, fewer manipulated-variable adjustments are allowed, and the number of ad
justments is given by the input horizon MM, which must be less than the output
horizon. Equations (23.17) and (23.18) are equivalent, and either one may be used
to evaluate the effects of future adjustments on the control objective. Perhaps equa
tion (23.18) provides a clearer picture of the calculation. The coefficient matrix
in equation (23.18) is often designated by the symbol A and is referred to as the
dynamic matrix. With this notation, equation (23.18) can be rewritten as

A[AMVC] = [CVC] (23.19)
The goal of perfect controlled-variable performance would be to have zero error
for all samples in the future, which would be achieved if

E/ = [CVC] per fect contro l o f CV (23.20)

However, this performance cannot be achieved in general, because of dead times,
constraints on the manipulated variables, and right-half-plane zeros (see Sections
13.5 and 19.2). Another way of stating this conclusion is that an exact plant (model)
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inverse cannot be achieved because of limitations in the physical process. There
fore, the best control involves the manipulated-variable adjustments that minimize
the sum of the error squared in equation (23.16), which in general is not zero. The
solution to this problem is the least squares solution, which can be considered an
approximate plant (model) inverse that has desirable properties for control perfor
mance. The solution to the optimization problem in equation (23.16) for the model
in equation (23.18) is the well-known linear least squares result

K d m c = ( A T A ) - ' A T ( 2 3 . 2 1 )
The dynamic matrix controller Kdmc can be used to calculate the future ad

justments at each controller execution by

K d m c E 7 = [ A M V C ] ( 2 3 . 2 2 )
This equation shows that the model of the process in the feedback path, A, and
the future errors are used to calculate the manipulated-variable adjustments. The
calculated adjustment for the current time period, AMV§, would be implemented
after the controller calculation. The later adjustments would not be implemented,
because they would be recalculated during later controller calculations.

EXAMPLE 23.3.
The process model in Table 23.1 describes the mixing process with dead time.
Feedback control using the proportional-integral-derivative (PID) algorithm has
been evaluated for this process in Section 9.3. Assume that the process is initially
at steady state, and its set point is changed by a 1% step. Design the DMC
controller matrix and evaluate the closed-loop dynamic response, assuming that
the model is perfect.

The following parameters must be chosen before the DMC design calculation
can be performed.

At = sample period
LL = number of sample periods required for the process model to reach

steady state
NN = controlled-variable (output) horizon
MM = manipulated-variable (input) horizon

In this example, the analyzer update occurs only once every 2.5 min; thus, the
controller execution is set by this limitation. The product (Ar)(LL) should be equal
to or greater than the settling time of the open-loop process, and the product
(Af)(NN) should be equal to or greater than the settling time of the closed-loop
process. The manipulated-variable horizon is usually selected to be greater than 1,
to allow some manipulated-variable overshoot if desired, and to settle well before
the end of the controlled-variable horizon; thus, 1 < MM < NN. The values of
the parameters for this example are summarized in Table 23.2. The horizons are
somewhat shorter than usually used in practice, to enable the key matrices to be
reported conveniently.

Since the system is initially at steady state, so that all past adjustments are
zero, the future errors are equal to the current error. Some of the key values in the
calculation of the future moves follow.

AT =

rO 0 0.394 0.632 0.777 0.865 0.918 0.950 0.970 0.982 0.989
0 0 0 0.394 0.632 0.777 0.865 0.918 0.950 0.970 0.982
0 0 0 0 0.394 0.632 0.777 0.865 0.918 0.950 0.970

LO 0 0 0 0 0.394 0.632 0.777 0.865 0.918 0.950



rO 0 2.54 0 0 0 0 0 0 0 0
0 0 -4.08 2.54 0 0 0 0 0 0 0
0 0 1.53 -4.08 1.86 0.95 0.40 0.065 -0.14 -0.26 -0.34

LO 0 0 1.54 -2.04 -0.93 -0.26 0.14 0.39 0.54 0.62

Kdmc =

( E / ) T = [ 1 1 1 1 1 1 1 1 1 1 1 ]

These values can be used to calculate the future values of the manipulated-
variable changes using equation (23.22). The changes can be summed to obtain
the manipulated-variable values at each time in the future.

[AMVC] =

Because the controller model is assumed perfect in this example, feedback does
not change the results in later controller executions. The responses of the manip
ulated and controlled variables are given in Figure 23.5. The controlled variable
cannot respond until after the process dead time, and for this system it can be
changed to the set point in one sample period after the dead time. To achieve this
performance, the manipulated variable must experience a rapid change of large
magnitude, which may not be acceptable. However, the controller objectives, as
stated to this point, have been achieved.

2.541 1-2.54
1.54
0.00 MVC = 1.00

1.00
0.00 J Li.oo
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TABLE 23.2

Summary of single-variable DMC simulation cases

Algorithm parameters
Controller
model,
difference
from plant
model**

Controlled-
variable
performance

I A E I S E

MV
performance

Case At MM NN W W qq £(AMV)2

Example 23.3 2.5 4 11 1 0 Same as 6.0 5.6 8.8
Figure 23.5 process
Example 23.4 2.5 4 11 1 0 Km = 0.65 12.9 7.7 29.5
Figure 23.7
Example 23.5 2.5 4 11 1 0.2 Km = 0.65 11.5 7.3 2.9
Figure 23.8a
Example 23.5 2.5 4 11 1 0.2 K„, = 0.65 8.9 4.2 0.8
Figure 23.8b

•The process is represented by the model in Table 23.1.
**The model used in performing all model-based calculations for DMC.
LL = large number, e.g., 5(NN).
«wmi«a^a3^^
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FIGURE 23.5

Dynamic response from Example 233 for the case with no model error.

Adding Feedback to the DMC Controller
To achieve acceptable feedback performance, the DMC controller must use the
measured value of the controlled variable. The method for including the feedback
is the same as employed in Chapter 19: the measured value is compared with a pre
dicted value, and the difference, the feedback signal Em, is added to the predicted
value used by the controller. This scheme is shown in Figure 23.1; note that adding
the feedback to the predicted controlled variable has the same effect on the sum of
error squared as subtracting it from the set point, as seen by considering equation
(23.16). This feedback approach is equivalent to adjusting a bias in the predictive
model without changing the step weights ay, thus, the feedback dynamics used by
the controller to relate adjustments in the manipulated variable to the controlled
variable are not influenced by the feedback. The result of the feedback, shown in
Figure 23.6, is similar to that in the model predictive controllers in Chapter 19:
zero steady-state offset for steplike disturbances, but no adaptation of dynamics
for nonlinearities.

The model used to calculate the effects of future changes in the manipulated
variables is similar to equation (23.15). However, the prediction of the future
behavior without control is modified to combine the model with the feedback
measurement signal as follows.

LL

CV{ = CV*K + iEm)K + £>;+1 AMV*_; (23.23)

The feedback signal is the difference between the measured and predicted values,

CC
Stamp
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FIGURE 23.6

Dynamic response of variables with feedback.

which is assumed to remain unchanged in the future:
iEm)K = iCVmea&)K-CVK (23.24)

Substituting equation (23.24) into equation (23.23) yields the model for the effects
of future changes in the manipulated variables.

LL
CV{ = CV*K + (CVmeask - CV* + £>,+, AMV*_; (23.25)

Thus, the feedback method is equivalent to setting the model prediction at the current
time to the current measured value of the controlled variable.

The DMC controller Kdmc can be designed with the same calculations, equa
tion (23.21). Again only the manipulated-variable adjustment at the current sample
period, AMVo, is implemented. The entire controller calculation is repeated at the
next sample period, because a new measured value of the controlled variable is
available.
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Some insight into the model predictive structure is gained by considering the
meaning of the feedback signal when the controller model is perfect. In this situ
ation, the effects of the manipulated variable on the true plant and the model are
identical and cancel when Em is calculated. Thus, the feedback signal is equal to the
effect of the disturbance on the controlled variable. Since the same value of the
feedback signal Em is used to calculate all future values of the controlled variable
without future adjustments, CV{ for all i = 1 to NN, the tacit assumption has
been made that the disturbance will be the same in the future as it is currently. This
is often a reasonable assumption when we have no special information about the
disturbance.

FB *—L-'•-ip W
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EXAMPLE 23.4.
The results in Example 23.3 were for the case when the controller model exactly
represented the true process. In this example, the model differs from the plant;
the model gain is 0.65%/% open, while the process gain remains 1.0%/% open.
Determine the closed-loop performance for this system.

The step response for the model can be derived using the method in Table
23.1 with Km = 0.65 (not 1.0), and this model can be used to derive the DMC con
troller from equation (23.21). The controller can then be employed with feedback,
and the resulting dynamic response is shown in Figure 23.7 and summarized in
Table 23.2. The model error led to considerable oscillation in this example, with
increased ISE of the controlled variable and excessive manipulated-variable vari
ation. However, the controlled variable ultimately returned to the set point, which
was the goal of the feedback. Thus, feedback has improved the performance of
the closed-loop system, but its dynamic behavior is not yet acceptable.

M M W P P i i ^ ^
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FIGURE 23.7

Dynamic response for Example 23.4 for the case with model error but no
move suppression.
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As with all controllers, adjustable parameters are needed to match the closed-loop
performance to the particular needs (manipulated-variable variability) and circum
stances (model mismatch) encountered in each application. In the DMC controller,
the principal manner for addressing these needs is to expand the objective used
in defining the control algorithm. This is done by adding a term that penalizes
changes in the manipulated variable at each execution.

N N , 2 j M M
OBJdmc = £ ww [SP, - iCV{ + CV;-)] + £ [qq(AMV,)2]

i = i I ' 1 = 1j = i
NNN N r - 2 - i M M

= £ ww(E/-CV?) +X>q(AMV,)2]
(23.26)

The Single-Variable
Dynamic Matrix
Control (DMC)

Algorithm

where ww = (> 0) adjustable parameter weighting the controlled-variable
deviations from set point, the ISE

qq = (> 0) adjustable parameter weighting the adjustments of the
manipulated variable. This parameter is termed the move
suppression factor.

The relative values of the two tuning parameters ww and qq determine how
much importance is placed on the controlled variable ISE and on the variability
of the manipulated variable; the original definition of the controller in equation
(23.16) can be thought of as equation (23.26) with ww = 1 and qq = 0. Naturally,
some variability in the manipulated variable must be allowed to enable the control
system to respond to disturbances and set point changes. However, the controller
with qq = 0 can be very aggressive, as seen in Figure 23.7. Also, because of model
mismatch, the controller with qq = 0 can lead to an unstable closed-loop system,
and increasing the value of qq (more correctly, qq/ww) increases the range of model
mismatch for which stable closed-loop performance is achieved. Finally, equation
(23.26) contains no term for deviations of the manipulated variable from a target
value, since the manipulated variable must be free to respond to disturbances of
various magnitudes and directions; thus, the penalty is on the adjustment or change
at each sample.

Again, the control algorithm determines the values of the future manipulated-
variable changes that minimize the objective function. The result is

- U T ,KDmc = (A1 [WW]A + [QQ])"'A1 [WW] (23.27)
where [WW] = diagonal matrix = wwInn

[QQ] = diagonal matrix = qqlMM
I/? = identity matrix of size R x R

Again, only the current manipulated-variable adjustment is implemented at each
controller execution. This is the form of the DMC control algorithm used in in
dustrial practice.

EXAMPLE 23.5.
Evaluate the control performance with model mismatch in Example 23.4, using the
DMC algorithm in equation (23.27) with adjustable tuning.

H f
CD ©
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The matrix algebra in equation (23.27) is slightly more complex, but the re
quired model information (i.e., step weights) is the same. In this example, the
number of parameters for the engineer to select is increased with the addition of
ww and qq. For the single-variable DMC, ww can be set to 1.0 without loss of
generality, which is not true for the extension to multivariable. The value for qq is
selected to be 0.20 for this example, and the choice of this value is discussed
in Section 23.6. The resulting transient response is shown in Figure 23.8a, and
parameters and performance values are summarized in Table 23.2. The perfor
mance with qq = 0.2 is much more acceptable, with lower ISE of the controlled
variable and about one-tenth the variability of the manipulated variable (£ AMV2).
An additional transient response has been evaluated for this system with the same
feedback model mismatch and controller tuning parameters; this is a response to
a unit step disturbance with a model Gds) = 1/(5$ + 1). The response in Figure
23.8b shows that DMC provides acceptable transient behavior and zero steady-
state offset for this disturbance.

The addition of the variability of the manipulated variable to the controller objective
with the associated tuning factor qq provides the engineer with the flexibility to
tune the controller for a wide range of objectives and model mismatch.

23.5 a MULTIVARIABLE DYNAMIC MATRIX CONTROL

It would be possible to employ the single-loop DMC as a replacement for the PID
controller and to implement multiloop control with DMC using the approaches
presented in Chapters 20 through 22. However, this approach would not realize
the great power of dynamic matrix control (or other similar centralized multivari
able algorithms). Here, the goal is to achieve centralized multivariable control,
in which the algorithm uses information from all controlled variables to calculate
all manipulated-variable adjustments simultaneously each execution. Fortunately,
the nature of the DMC algorithm makes its extension to multivariable control
straightforward. In addition, the calculations performed at each controller execu
tion remain relatively simple.

Again, the basis for the algorithm is the step response model. In the multi-
variable situation, one model exists for each input-output combination, and the
form of each single input-output model remains as described in Section 23.3. The
objective for the controller becomes

N C N N 2 N M M M

OBJdmc = £ wwnc £ [Efnc. - CVcncJ] + ]T qqnm £(AMVnm,,y
n c = l / = ! n m = l i = l

(23.28)

where NC = number of controlled variables; nc is the counter for the
controlled variables (1 to NC)

NM = number of manipulated variables; nm is the counter for
the manipulated variables (1 to NM)

wwnc = adjustable parameter weighting the nc'th controlled
variable's deviation from set point

qqnm = adjustable parameter weighting the adjustments of the nm'th
manipulated variable
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Dynamic response for Example 23.5 for the case with model error and move
suppression: (a) set point change; ib) disturbance.
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For multivariable control, a separate value for wwnc is allocated to each controlled
variable. The ratio of these values represents the relative importance of devia
tions from set point of the controlled variables, which can be used to tune the
controller for different performance objectives. Also, each manipulated variable
has an associated qq^, which gives the penalty for adjustments. A multivariable
controller has many parameters that must be tuned in conjunction to obtain the
desired performance.

The control algorithm that achieves this objective is

KDmc = (AT[WW]A + [QQ])"1 AT[WW] (23.29)
This is the same form as the result for single-loop control. However, the matrices
in equation (23.29) are composed of individual blocks, with each block consisting
of a single-variable matrix or zeros. For the two-variable control problem,

[ W W ] , o ] r n n i _ r [ Q Q ] i 0 1
[WW]2J L^J-|_ 0 [QQ]2J

(23.30)

A TAu A12 l
[A2i A22J

[WW] = 0

where Lnc,nm = dynamic matrix shown in equation (23.18) for the
controlled variable nc and the manipulated variable nm

[WW]nc = diagonal matrix = ww„cInn for nc = 1 to NC
[QQ]nm = diagonal matrix = qqnmlMM for nm = 1 to NM

0 = square matrix containing zeros
With this result, the errors of all controlled variables are considered simultane
ously in determining the adjustments to all manipulated variables. The methods of
modelling and feedback conform to the model predictive control structure, with all
models being multiple-input-multiple-output and the controlled and manipulated
variables being vectors of values for each variable. As before, only the current
manipulated-variable adjustments are implemented at each controller execution.
EXAMPLE 23.6.
Apply DMC control to the distillation tower considered in Example 23.1 and mod
elled in equation (23.5).

The first step is to develop the step response models using the method in Table
23.1 or, equivalent̂ , equation (23.10) for each of the Anc,nm matrices. In performing
this modelling, the sample period and horizon lengths must be decided. Finally,
the tuning parameters are selected. With this information, the DMC controller KDMc
can be calculated using equation (23.29). The controller design parameters used
in this example are as follows:

At - 1 MM = 5 NN = 20 LL = 100 ww, = ww2 = 1 qq, = qq2 = 0.02

The transient response to a set point change in the distillate purity, with the bottoms
set point unchanged, is given in Figure 23.9a. Also, the transient response to a
-4% step change to the light key in the feed is given in Figure 23.9b. In both
plots the plant is represented by the linear model in equation (23.5), so that these
responses are for no model mismatch, although the tuning has been selected to
give a reasonably moderate feedback response.

The performance measures for these dynamic responses are given in Table
23.3. These results can be compared with the performance achieved with two
PI controllers, although no attempt was made to provide the best tuning to either
control system. (Note that the set point change in Table 21.2 was half the magnitude
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TABLE 23.3

Summary of performance for Example 23.6
Case I A E ™ I S E ™ I A E ™ I S E ™ £ ( A F * ) 2 £ ( A F V ) 2

Figure 23.9a
Figure 23.9b

0.225
0.207

0.00122
0.00093

0.073
0.33

0.00010
0.00413

0.0141
0.00029

0.0097
0.0147

of that in Table 23.3.) In these examples, the DMC controller provided about the
same performance for the disturbance and better performance for the set point
change.

As demonstrated in this section, the multivariable dynamic matrix controller
is a straightforward extension of the single-variable controller. The controller al
gorithm can be calculated for any (stable) process model, without regard for dead
times or numerator dynamics. The dynamic responses in the example show that
good performance can be achieved without excessive adjustments of the manipu
lated variables.

23.6 ® IMPLEMENTATION ISSUES IN DYNAMIC MATRIX
CONTROL

While the design and implementation of centralized feedback control have been
shown to be possible, a large number of design and implementation decisions must
be made to achieve good performance. Some of the most important are discussed
briefly in this section.

Real-Time Calculations
The distinction is important between the design calculations, which are performed
once offline, and the control calculations, which are performed every control execu
tion. Basically, the design calculation is given in equation (23.29). This calculation
involves the inverse of a square matrix with dimensions (MM)(MM). This inverse
could be computationally intensive, but it is calculated only during offline design.
In contrast, the controller calculation requires the following limited calculations
every execution:

1. Calculate the feedback signal Em, which requires advancing the prediction of
the model Gm in the block diagram and equation (23.14) by one time step.

2. Calculate the future error that would occur without future adjustments, e{ =
([SP]/ - [CVf]i) for i = 1, NN. This requires the model for [CVf]t in equation
(23.23) to be calculated for NN time steps.

3. Calculate the current adjustment to the manipulated variable. The basis for
this calculation is equation (23.22), which will give the adjustments for the
entire input horizon—more information than needed, because only the current



change in manipulated variable is required. For example, the single-variable
DMC needs only AMVo, which is the sum of the element products of the
top row of Kdmc and the future error W. This vector-vector product requires
fewer calculations.
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Tuning
The dynamic matrix controller has a large number of adjustable parameters, all
of which influence the control performance. In addition, the best value of some
parameters depend on the values of others. The following comments should help
in selecting good initial values.

At Factors in selecting the execution period are the same as discussed
in Chapter 11 on PID control. This should be a small fraction of
the closed-loop dynamics [e.g., At < 0.1(0 + r)].

NN The output horizon should be long enough for the closed-loop system
to approach its steady state in the time A/(NN). Typical values for
NN range from 20 to 50.

MM The input horizon is selected to be shorter than the output horizon.
Typically, MM is about one-fourth to one-third of the output horizon.

wwnc The weighting for each controlled variable represents the relative
importance of each deviation from its set point. Increasing this
number tends to reduce the deviation of this controlled variable,
but the deviation of other controlled variables will increase. The
engineer must recognize that the controller objective is calculated
in engineering units, so that the weighting must reconcile the
comparison of various variables, such as temperature and mole percent.

qqnm The weighting for each manipulated variable represents the relative
importance of the adjustments to each manipulated variable.
Increasing this number will tend to slow the feedback adjustments,
which would degrade the controlled-variable performance; however,
increasing qqnm also improves the robustness of the closed-loop system
to model mismatch. Also, increasing qqnm reduces the variability
of the manipulated variable, which may be required in some
circumstances. As a result, the parameter is often referred to as the
move suppression factor.

Good values for wwnc and qqnm depend on their relative magnitudes, such as
wwi/qq2 and wwi/ww2. Thus, strong interactions exist among the effects of the
many tuning parameters on the control performance, and often some simulation
studies are required to determine good tuning.

The presentation in this chapter has assumed that the weighting matrices
[WW] and [QQ] are diagonal. This assumption is valid when the desired behavior
of one controlled variable does not depend on the behavior of other controlled
variables. That condition might not be the case for some processes. For example,
a high temperature and high reactant concentration might be a particularly bad
condition; in such a case, a penalty could be introduced in the appropriate off-
diagonal elements in [WW] for the deviations of both.
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FIGURE 23.10

Effect of controller tuning on controlled and manipulated
variables (ww = 1).
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EXAMPLE 23.7.
Study the effects of tuning on the single-variable DMC controller in Examples 23.3
through 23.5. For this study, assume that no model mismatch exists and that the
input forcing is a unit step set point change.

The common manner for presenting such a tuning study is to plot the perfor
mances of the manipulated and controlled variables against the tuning parameter,
which for the single-loop case is qq/ww. This plot is given in Figure 23.10, with re
sults that are typical of many systems. As the move suppression is increased from
zero, the first effects are a rapid drop in the variability in the manipulated variable,
with a small increase in the ISE of the controlled variable. After some value of qq,
the effects on both variables are moderate. Often, the value of qq where the vari
ability in the manipulated variable stops decreasing rapidly gives an acceptable
initial tuning, with reasonable robustness to typical model mismatch and moderate
variability in the manipulated variable. This study provided the basis for the value
of qq, 0.2, used in Example 23.5.

F i l te r ing

High-frequency noise in the controlled-variable measurement can be filtered for
the reasons discussed in Section 12.3. The measurement can be filtered before
calculating the feedback signal Em.

Cascade Implementa t ion

Centralized multivariable controllers can output directly to final elements, but a
more common design is to output to a single-loop system. As an example, the
distillation control in Figure 23.2 and studied in Example 23.6 outputs to the set
points of two flow controllers. The design of these lower-level loops follows the



principles of single-loop enhancements (Part IV) and loop pairing (Chapters 20
through 22) already presented.

23.7 □ EXTENSIONS TO BASIC DYNAMIC MATRIX CONTROL
The method presented in detail in this chapter represents only the most basic form
of the dynamic matrix controller. Many extensions are possible, and some are
essential for success in challenging applications. A few of the more important
extensions are introduced briefly in this section.

Nonsquare Systems
Many control systems have an unequal number of controlled and manipulated vari
ables. Methods for addressing these situations using single-loop (decentralized)
control were presented in Chapter 22 on variable-structure control. The DMC
controller can accommodate this situation, because no assumption has been made
in developing the design for KDMc in equation (23.29) regarding the number of
process variables. If more controlled than manipulated variables exist, not all con
trolled variables can be maintained at their set points (at the steady state), and the
DMC controller will minimize the objective in equation (23.26). When a steady
state is achieved after a disturbance, the deviations of each controlled variable
from its set point depend on the weights, ww,-. If more manipulated than con
trolled variables exist, all controlled variables can be maintained at their set points
(in the steady state), and the manipulated variables can be adjusted to achieve
additional benefits, such as low energy consumption. Methods are described in
Cutler and Ramaker (1979) and Morshedi et al. (1985).

Feedforward
The centralized control method in this chapter addressed feedback control, but it
can be extended to include feedforward compensation. If a measured disturbance
satisfies the feedforward design criteria in Table 15.1, it can be included by mod
elling its effect on the future controlled variable without feedback adjustment.
Thus, the effect of the measured disturbance is simply another process input in
calculating the values of [CV ]̂,- that are used in calculating E^ and the controller
calculation in equation (23.22). Both the controller design equation for KDmc
and the calculation at each controller execution, [AMV] = [KdmcHE^L remain
unchanged.
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Constraints on Variables: Quadratic Dynamic Matrix
Control (QDMC)

Often, the behavior of the control system in a real plant is limited by constraints.
These constraints can be limitations to manipulated variables; e.g., a valve cannot
exceed 100% open or the reflux should not decrease below a minimum for proper
tray contacting. In addition, constraints can be imposed on the dependent, con
trolled variables; for example, the temperature should not go above 350 K. The
design of the DMC controller in equation (23.29) was based on a least squares
method that relies on the controlled and manipulated variables having continuous
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derivatives, which is not valid when constraints are encountered. Fortunately, the
DMC approach can be extended to designs that minimize the same objective while
observing constraints by using a different optimization method. One common ap
proach uses a solution method termed quadratic programming; thus, the controller
is termed quadratic dynamic matrix control (QDMC). A slight disadvantage of in
cluding constraints is an increase in the calculations that must be performed with
each controller execution. However, with powerful digital computers, this has not
proved to be a barrier to practical application.

The measure of control performance used in QDMC is the same as the DMC
controller, so that OBJqdmc = OBJdmc. which is given in equation (23.28). A
summary of the mathematical problem solved at each controller execution is given
in the following:

min OBJqdmcamv (23.31)

As in DMC, the dynamics responses between manipulated and controlled
variables are represented by step-weight models.

[CVC] = A[AMVC] (23.19)
The value of the controlled variable in the future output horizon, CV,-, is

C V, = CV?
t

Calculated
from the future
adjustments,
AMV?

+ C V/

f
Calculated
from the past
MV and Em

subject to the following constraints that are imposed on every variable at every
time step in the future horizon (i).

Rate of change of the M V:
Full value of MV:
Value of the CV:

AMVrain < AMV? < AMVr
MVmin < MV,- < MVmax
{"Vmjn < CV,- < CVmax

Some problems occur when the controlled variables are subject to strict limits
as shown above; e.g., it may not be possible to achieve the controlled variable
performance (CVmin < CV,- < CVmax) when the manipulated variables are also
restricted. Therefore, the bounds on the controlled variables are usually imple
mented as penalty functions that force the solution to obey the constraints only
when possible. Further details on the QDMC algorithm are provided by Garcia and
Morshedi (1986), Morshedi et al. (1985), and Ricker (1985). In addition, Qin and
Badgewell (1997) provide an overview of centralized model predictive control,
along with a summary of similar algorithms used commonly in industry. Now, we
will consider two examples of QDMC.

Typically, centralized model-predictive control is applied to plants in which
substantial interaction occurs among important variables. An example of a situation
with strong interaction is given in Figure 23.11, which shows a hydrocrackirig
chemical reactor in a petroleum refinery. The process involves a series of packed
bed, adiabatic reactors in which highly exothermic chemical reactions occur. The
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FIGURE 23.11

Hydrocracker reactor with QDMC centralized control.

reactor bed inlet temperatures are regulated by single-loop controllers that adjust
the mixing of hot and cold feeds for the first reactor and adjust the injection of cold
hydrogen in the second to fourth reactors. The control objectives are summarized
in the following.

1. Prevent high temperatures in each bed Therefore, each 7} should remain
below Tjnax. If this limit is closely approached or exceeded, extreme corrective
action must be taken by decreasing the bed inlet temperature set point, even if
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the product quality is severely upset. Note that feedback action is required for
only a negative error (Tmax — T < 0); this "one-sided" feedback is possible
with QDMC, but not with DMC.

2. Control total conversion Unfortunately, the conversion of feed to products
cannot be measured because of the large number of components. Even if
conversion could be measured, the hundreds to thousands of reactions could
not all be controlled independently. Therefore, the concept of partial control
is employed (see Chapter 24), and a dominant variable is selected. For hy-
drocracking, the weighted average bed temperature, WABT, is often used as
an inference for conversion; it weights each bed temperature by the mass of
catalyst in the bed.

3. Reducing energy consumption An indication of this objective is the amount
of material that bypasses the fired heater, because mixing cold and hot streams
is less efficient than heating the total feed to the required temperature.

4. Maintain yield and catalyst activity Notice that many different operations
(i.e., values of Tx to T4) could yield the same WABT; therefore, the distribution
of individual bed temperatures is selected to provide the desired selectivity
and catalyst life in the four reactors.

5. Manipulated variable bounds Every manipulated variable (set point of
secondary cascade controllers) must remain within specified maximum and
minimum values.

The MPC design for this process and objectives is also shown in Figure 23.11
(Kelly et al., 1988). The controlled and manipulated variables are summarized in
the following table.

Set
point Manipulated variables

Controlled variables
(in order of decreasing importance)

T10 Fired heater effluent
T01 Bed 1 inlet temperature
T02 Bed 2 inlet temperature
T03 Bed 3 inlet temperature
T04 Bed 4 inlet temperature

Bed 1 to 4 temperature < T^
WABT deviation from set point
V01 % open deviation from set point
Bed 1 to 4 temperature distribution

The form of the MPC used industrially by Kelly et al. (1988) was the quadratic
dynamic matrix control (QDMC) with constraint handling capability. Evaluation
of the dynamic performance of the design indicated that it performed very well.
During evaluation tests, no bed temperature exceeded its maximum limit; the most
important variable (WABT) was controlled close to its set point; the bypass valve
was maintained near the desired percent open; and each of the individual bed
temperatures varied about their set points (Kelly et al., 1988; Stanfelj, 1990).

EXAMPLE 23.8.
DMC control was applied to a distillation tower in Example 23.6 for situations
in which no constraints were encountered. Here, QDMC is applied to the same



distillation tower for situations with constraints. Again, the tower is described in
Example 23.1 and modelled in equation 23.5. The set point response is considered
in this example, so that these results can be compared with the unconstrained
results obtained in Figure 23.9a.

The solution is developed with the QDMC controller described in equation
(23.31) using the same values for the following parameters as used in the uncon
strained case in Example 23.6.

At = 1 MM = 5 NN = 20 LL = 100 ww, = ww2 = 1 qq, = qq2 = 0.02

Input constraint. In this situation, the reboiler duty is limited because of a max
imum possible heating medium flow rate. The maximum amount of reboiled vapor
is 14.1 kmol/min. The results are given in Figure 23.12a for a set point change in
the XD controlled variable. Because one of the manipulated variables encounters
a constraint, both controlled variables cannot be maintained at their set points.
Since the QDMC objective [equation (23.29)] considers both controlled variables,
the controller adjusts the one remaining, unconstrained manipulated variable to
minimize the sum of the (squared) errors for the distillate and bottoms compo
sitions. Neither controlled variable achieves its set point, but each is maintained
"close" to its set point. Modifications can be made to QDMC to select a priority
ranking for controlled variables so that the more important can be returned to
their set points when all controller variables cannot be returned to their set points
(Swartz, 1995).

Output constraint. Again, the set point response for a change in the XD set is
considered. In this situation, the light key in the bottoms should be maintained be
low a specified limit or costly economic penalties would occur. The maximum value
for XB is 0.0205, and this limitation is included in the QDMC controller through a
very severe penalty on any XB values that exceed the limit. The results are given
in Figure 23.12b. To reduce the disturbance to XB due to interactions, the con
troller has slowed the adjustment to the manipulated variables slightly. Therefore,
slightly more time is required to change the distillate composition, XD. However,
the controller achieves the dual goals of reasonably fast XD response while XB is
maintained within its specified upper limit. This excellent performance is due to
the capability of the QDMC controller and the perfect model used in this simulation
example. Such excellent performance would not be expected for a realistic non
linear process with dynamics changing due to alterations in operating conditions,
but quite good performance can be achieved using centralized model predictive
control.
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Given the success of centralized control, the reader may wonder about using
this technology for centralized control of large plants having hundreds to thousands
of variables. Although theoretically possible, such large MPC controllers are not
now used because of (1) the difficulty in building the models, (2) the computa
tion time for solving the optimization problem, and (3) the challenge to the plant
personnel in understanding the controller results. Typically, centralized MPC is ap
plied to blocks of variables that have substantial interaction among themselves and
weak effects on the remainder of the plant. Thus, plants can have multiple central
ized, multivariable MPC and many single-loop controllers. Also single-loop con
trollers remain as lower-level, secondary controllers whose set points are adjusted
by the higher-level MPC controllers. For example, PID controllers remain in the
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(a) Dynamic responses for closed-loop QDMC control with a maximum limit on the
manipulated reboiled vapor rate. (Compare with Figure 23.9a.) ib) Dynamic
responses for closed-loop QDMC control with a maximum limit on the controlled
XB. (Compare with Figure 23.9a.)



hydrocracker to cont ro l the furnace out le t and reactor in le t temperatures. Thus, 757
even in the age of block centralized MPC, knowledge of single-loop control is iiiwiyriiiiiiiii^
i m p o r t a n t t o t h e e n g i n e e r ! R e f e r e n c e s

Non-Self-Regulating Processes
The step weight model described in Section 23.3 is limited to processes that are
stable and self-regulating so that they attain a steady state after a step input. As
discussed in Chapter 18, many inventory processes (levels) are not self-regulatory,
because they are pure integrators. The step response modelling method has been
extended to integrators, and details are provided by Cutler (1982).

23.8 □ CONCLUSIONS
A practical method for centralized process control has been presented in this chap
ter. The general model predictive structure provides the framework for the control
method, but the analytical design approach proves a limit to direct extension of
the methods from Chapter 19. The novel modelling and numerical calculations of
the dynamic matrix controller algorithm result in a method that can be applied to a
wide range of processes. The addition of feedback and tuning parameters provides
the basic centralized controller algorithm, with extensions possible for special sit
uations. The performance of the dynamic matrix controller has been demonstrated
to be good for single- and multivariable systems.
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Q U E S T I O N S 7 5 9
23.1. Determine step response models (i.e., the step weights) for the following Mmmwmmmmmmmmim

systems based on the continuous models already developed. Select ap- Questions
propriate values for the sample period, the input horizon, and the output
horizon.
Single-variable:
ia) The three-tank mixing process, first-order-with-dead-time approxima

tion (Example 6.4, base case)
ib) The series chemical reactors in Examples 3.3 and 4.12.
TAvo-variable:
(c) The blending process in Examples 20.6 and 20.10
id) The two processes with simple and complex interactive dynamics, B1

and B2, in Example 21.4
ie) The distillation tower under material balance regulatory control in

equation (21.2)
23.2. Calculate the dynamic matrix controller Kdmc for one of the single-loop

processes already modelled in question 23.1. Select an appropriate input
horizon and let ww = 1 for all controlled variables. The calculations can
be performed on a spreadsheet or using a programming language. After the
controller has been determined, evaluate the response of the controlled and
manipulated variables to a step change in the set point without model error;
this can be done by evaluating the product in equation (23.22), [AMV] =
[KdmcHE^L where [Ef] = [ASP]. Begin with qq = 0, and increase it.
Select an appropriate initial value for qq.

23.3. The step response model can be determined from empirical data.
ia) Discuss the advantages and disadvantages for using sampled values of

the original data for the model.
ib) Discuss the procedure required and likely results of fitting the coef

ficients aj in the following model to experimental data using linear
least squares. Recall that this model will have between 20 and 50 co
efficients.

*+i
Yk+\ = /^QjAXic-j+x + Y0

7=1

ic) Are the dynamics of the sensor and the final element included in the
models used in the design of the DMC controller?

23.4. The DMC objective function selected to be minimized is the ISE over the
output horizon.
(a) What is the advantage of using the ISE rather than the IAE or (error)4?
ib) From a necessary condition for a minimum (the gradient is zero), derive

the equation for the DMC controller in equation (23.21).

23.5. Derive the analytical model predictive controller for the following pro
cesses. For each, state whether the controller can be easily factored, and if
so, select an IMC filter structure and time constant value(s) to give good
dynamic performance.
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23.6. Discuss the effect on the closed-loop performance of the following changes.
(a) Multiply every ww and qq by a positive constant.
ib) Add a constant to the DMC objective function.
(c) Change the units of one controlled variable, for example, the bottoms

composition in Example 23.5, from mole fraction to mole percent,
(fl") Increase all qq by the same positive factor, maintaining all ww constant.

23.7. Develop the appropriate step response model for a pure integrating level
process. Describe how this could be used to model the process over a long
time, without involving a summation of infinite length.

23.8. Determine all calculations for adding feedforward control for a measured
disturbance to the single-loop DMC control system in Example 23.5. The
answer should include a block diagram, summary of controller execution
calculations, and any new models and/or modifications to the controller
Kdmc- The model for the disturbance is Gdis) = 1 .Qe~25s/i5s +1). Also,
design a feedforward controller using methods in Chapter 15 and discuss
the expected difference in performance.

23.9. Determine all calculations for adding feedforward control for a measured
disturbance in the feed composition to the multivariable DMC control sys
tem in Example 23.6. The answer should include a block diagram, summary
of controller execution calculations, and any new models or modifications
to the controller, Kdmc- The model for the disturbance is given in equation
(23.5). Also, design a feedforward controller using methods in Chapter 15,
and discuss the expected difference in performance.

23.10. Criteria for zero steady-state offset from set point are presented in Chapter
19 for IMC and Smith predictor designs. Determine the criteria for the
DMC system to achieve zero steady-state offset for a steplike disturbance.

23.11. Suppose that slower set point response was desired, but fast disturbance
response was required. How could you modify the DMC control system de
sign to accommodate this performance requirement? (Hint: Review Chap
ter 19 for an approach to achieve this performance.)

23.12. The DMC controller was described in this chapter using step response
models to calculate the model to compare with the feedback measurement
and to calculate the future performance without control, CVJ.
(a) Describe how the discrete models derived in Appendix F could be used

for these calculations.
ib) Could these models also be used to determine KDmc?


