
Multiloop
Control: Effects

of Interaction
20.1 u INTRODUCTION
Multivariable control occurs in nearly all processes, because production rate (flow),
inventory (level and pressure), process environment (temperature), and product
quality are normally controlled simultaneously. The multiloop approach, using
multiple single-loop controllers, was the first approach used for multivariable con
trol in the process industries. Through decades of research and experience, many
successful multiloop strategies have been developed and continue to be used.

One advantage of multiloop control is the use of simple algorithms, which is
especially important when the control calculations are implemented with analog
computing equipment. A second advantage is the ease of understanding by plant
operating personnel, which results from the simplicity of the control structure.
Since each controller uses only one measured controlled variable and adjusts only
one manipulated variable, the actions of the controllers are relatively easy to mon
itor. A third advantage is that standard control designs have been developed for
the common unit operations, such as furnaces, boilers, compressors, and simple
distillation towers. This does not mean that a single control design functions well
for all unit operations of the same type. However, several general structures are in
common use, and selection among alternatives can be based on analysis and expe
rience. Considering these advantages, one could conclude that multiloop designs
will continue to be used extensively, although not exclusively.

An example of multiloop control of a flash process is given in Figure 20.1.
Let us consider the behavior of the system when the feed flow rate increases. An
initial effect is an increase in the amount of vapor entering the drum, although the
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Example of a multiloop control system.

percentage feed vaporized decreases because of a slight decrease in inlet tempera
ture. The pressure in the drum increases because of the additional vapor; therefore,
the pressure controller PC-1 takes action by increasing the percent opening of the
valve in the vapor line. Another effect is a decrease in the temperature after the
heat exchanger, which is sensed by TC-3. This feedback controller increases the
steam flow to the exchanger, which returns the temperature to its set point and
causes even more feed to be vaporized. This additional vapor causes the pressure
to increase, and the pressure controller has to respond to this change as well. The
increase in feed rate and changes in percent vaporized introduce changes in the
liquid rate into the liquid inventory in the drum. The level controller increases the
opening of the valve in the liquid product line to maintain the level near its set point.

Two important features of this system become clear when observing its dy
namic behavior:

1. The single-loop controllers are completely independent algorithms that do not
communicate directly among themselves.

2. The manipulations made by one controller can influence other controlled vari
ables; that is, there can be interaction through the process among the individual
control loops.

The interaction is the key effect addressed in this chapter, where we will demon
strate that several single-loop controllers on a process should not generally be
analyzed as though each were a single-loop system.

We shall use the following definition of interaction.

A multivariable process is said to have interaction whenprocess input (manipulated)
variables affect more than Onê  process output (controlled) variable.

This definition is consistent with the use of the word in the vernacular and will



serve us in the study of multivariable systems. However, the definition does not
distinguish between various important properties that will be introduced in this
chapter. Thus, careful attention must be paid to the effects of various types of
interaction on control stability and performance.

In this chapter the basic principles of multiloop control are presented, with
the goal of understanding multivariable systems. As with single-loop control, we
start with the process by reviewing modelling approaches for multivariable pro
cesses and developing models for two sample systems, which will be used in later
examples. Then the concept of interaction is discussed to highlight its effects on
system behavior, and a quantitative measure of interaction is introduced. Finally,
some approaches for tuning multiloop controllers are presented. All of the con
cepts developed in this chapter are employed in the next chapter, which addresses
the performance of multiloop control systems.
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20.2 n MODELLING AND TRANSFER FUNCTIONS

Process models for multivariable control can be derived from fundamental prin
ciples or can be estimated based on empirical data. Regardless of the modelling
method used, the analysis, design, and tuning of multiloop controllers will be
based on linear input-output models employing block diagram manipulation, sta
bility analysis, and frequency response. The following two examples demonstrate
the modelling approaches applied to blending and distillation, and the resulting
models will be employed in several subsequent examples.

EXAMPLE 20.1.
Blending is an important unit operation and is employed in a wide variety of indus
tries, as in the production of gasoline (Stadnicki and Lawler, 1985) and cement
(Sakr et al., 1988). Typically, the controlled variables in a blending process are
production rate and blended product composition. The blending process in Fig
ure 20.2 is modelled with the following assumptions:

1. The inlet concentrations are constant.
2. Mixing where the flows merge is perfect.
3. The densities of the solvent and component A are equal.

The overall and component A material balances at the point of mixing are
Fm = FA + FS

FmXm = FAXA + F$Xs
(20.1)

(20.2)
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FIGURE 20.2

Example blending process.

where Fm — flow rate of mixed liquid (mass/time)
XA = mass fraction of component A in pure A = 1.0
Xs = mass fraction of component A in solvent = 0.0
Xm = mass fraction of component A in the mixed liquid

Equation (20.2) can be linearized about the steady state to give

K i t ) ■ i
Fs

iFs + FA)2]s F'Ait) +
-Fa

ViFs + Fta)2 I Kit) (20.3)

with the prime indicating deviation variables. The system is liquid-filled; thus, there
is essentially no delay between a change in a component flow rate and a change
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in the mixed-product flow rate. It is also assumed that the concentration at the
location of the analyzer is essentially the same as at the mixing point; that is, there
is no transportation dead time. Also, the inlet flow measurements are assumed
to be exactly and instantaneously equal to the actual flows, F, = Fs and F2 =
FA. The dynamics of the mixed stream flow and concentration sensors are not
instantaneous and are characterized by a first-order-with-dead-time model with
gains of 1.0 and the following dynamic parameters:

Dead time Time constant

Flow
Concentration

0F
eA

xF
*a

Thus, the measured controlled variables are related to the instantaneous process
variables in equations (20.1) and (20.3) by

"Ca-

xf-

dA\jt)
dt

dF^jt)
dt

= X ' i t -9A)-A\ i t )

= F'mit-eF)-Fdt)

(20.4)

(20.5)

Equations (20.1) and (20.3) to (20.5) can be combined to give the following
linearized dynamic model:

Axis) =
\ ~Fa 1 e-*A>
LiFs + FA)2\s

1 +xAs Fxis) + LiFs + FA
1 + xAs

e
— * F d s ) (20.6)

l . O e " ^ 1 . 0 * - ' ' *
F d s ) = ^ ^ F x i s ) + ^ — F d s )1 + XFS 1 +XpS (20.7)

Clearly, interaction is present in this process, because each output is affected
by both inputs. Numerical values will be determined for different operating condi
tions later in this chapter.

EXAMPLE 20.2.
The empirical identification procedures described in Chapter 6 can be applied to
the distillation process shown in Figure 20.3. (This design was originally suggested
by McAvoy and Weischedel (1981) and was approximated for constant relative
volatility by Sampath (1991).) The manipulated variables are reflux and reboiler
flow rates, and the controlled variables are distillate and bottoms composition.
Other important variables, such as pressure and levels, are controlled tightly as
shown.

One experiment must be performed for each input variable, and the responses
of all output variables (after 2 min analyzer dead time) are recorded. Either the
process reaction curve or statistical methods can be used to fit parameters in the
transfer functions. The models derived by this empirical procedure are as follows



~§

r \ ( \ I 7 R

-c&»
^ ■ckj-

§

with time in minutes:

Relative volatility 2.4
Number of trays 17
Feed tray 9
Analyzer dead times 2 min
Feed light key XF = 0.50
Distillate light key Xd = 0.98 mole fraction
Bottoms light key *b = 0.02 mole fraction
Feed flow FF = lO.Okgmole/min
Reflux flow Fr = 8.53 kgmole/min
Distillate flow Fd = 5.0 kgmole/min
Reboiler flow Fv = 13.53 kgmole/min
Tray holdup H = 1.0 kgmole
Holdup in drums HD = 10.0 kg mole
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FIGURE 20.3

Example distillation tower.

v , x 0.0747<T3s „ , N 0.0661e-2s „ , v 0.70<r5vXois) = ,„_ , , FRis) - —r^—r-Fvis) + , A A , , XFis)1 2 5 + 1 1 5 * + 1
v , , 0.1173<r335 „ , x 0.1253*-* „ , xX5(5) = ,,„ , , FRis) - ————-Fv(5) +11.75 + 1 10.25 + 1

14.45 + 1
1.3e-3'
125+1 XF(5)

(20.8)

(20.9)

Note that the reflux flow iFR) and amount vaporized in the reboiler (Fv) are
potential manipulated variables, and the feed composition iXF) is a disturbance,
because it depends on upstream operations and is assumed not free to be ad
justed.

Finally, the linearized models in Examples 20.1 and 20.2 will be used in
subsequent system analysis examples. When the dynamic responses are determined
via simulation, the linearized distillation model will be used, but the nonlinear
blending model will be used because of the large range of operating conditions
considered in the blending examples.

Linearized models, whether derived from fundamental balances or from exper
iments, can be used to analyze the system with and without control. To understand
the entire system, it is helpful to present the process in a block diagram. The block
diagram of a general 2x2 system, recalling that each process transfer function
relates one input to one output, is shown in Figure 20.4. Each term G,j is) relates
manipulated input j to output i, and the terms Gjds) relate the effects of a dis
turbance on each process output. If more than one important disturbance is to be
considered, additional disturbance transfer functions can be included. Note that if
both Gxds) and G2xis) [or alternatively Gxxis) and G22is)] are zero, the process
has no interaction, because one input affects only one output. In such a case, the
system behaves like two independent processes, and the behavior of each control
loop is independent.
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Block diagram of 2 x 2 open-loop system.

The set of simultaneous equations relating inputs to outputs in Figure 20.4 are
often presented in matrix form as follows:

\CVxis) ] _ \Gxxis) Gxds) ] \MVxis) ] \Gdds) l 2Q m
[CV2is)\ ~ [G2xis) G22is)\ [MVds) J + [Gd2is) J D{S) W10'
Each element of the matrix is a transfer function relating one input to one

output. Thus:

Linear models for multivariable systems can be developed using the same analytical
and empirical procedures as for single-variable systems.

20.3 n INFLUENCE OF INTERACTION ON THE POSSIBILITY
OF FEEDBACK CONTROL

Previously, some basic requirements were stated for the variables involved in a
single-loop feedback control system. Briefly, the controlled variable should be
closely related to process performance; the manipulated variable should be in
dependently adjustable; there should be a causal relationship between the ma
nipulated and controlled variables; and the dynamics should be favorable. These
guidelines are still useful, but a somewhat more thorough analysis is required for
multivariable systems, because range and controllability are influenced by process
interactions.

Operating Window
The first issue is the control system's range of attainable variable values. The term
operating window will be used for the range of possible (or feasible) steady-state
values of process variables that can be achieved with the equipment available. The
operating window can be sketched using different variables as coordinates; in one
approach, the controlled variables are used to characterize the range of possible
set points, with all disturbances constant. Another common approach is to use
the disturbance variables as coordinates to characterize the range of disturbance
values that can be compensated by the control system (i.e., for which the con-
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Operating window for blending with controlled variables as
coordinates.
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trolled variables can be maintained at constant set points). The two approaches are
demonstrated in the following examples.
EXAMPLE 20.3.
The component flow rates in the blending example can be adjusted continuously
from zero to maximum rates, FAtmK and FSmax. Draw the operating window of attain
able total flow rate and composition, assuming that the component compositions
remain unchanged.

The attainable total flow F3 and composition Ax are shown in Figure 20.5. The
limiting values are easily determined by solving equations (20.1) and (20.2) for
various values of one flow, with the other flow at its maximum value. The interaction
between variables is clear, because the value of one variable influences the range
of the other variable. If the variables were independent and no interaction occurred,
the operating window would be rectangular, which it clearly is not.

EXAMPLE 20.4.
The feed flow rate and composition to the distillation tower in Example 20.2 change
over ranges of 8 to 12 kmole/min and mole fraction 0.4 to 0.6, respectively. Also, the
vapor condensed in the condenser cannot be greater than 15.0 kmole/min. Deter
mine the range of disturbances for which the product qualities can be maintained
at 0.98 and 0.02 mole fraction.

The method for calculating the operating window for this example depends on
the equation-solving methods available. A trial-and-error method could be used to
specify the disturbances and simulate the tower with XD and XB at their set points.
This trial-and-error procedure, involving many simulations, would be executed
until the disturbance value that resulted in the maximum overhead vapor flow was
found. A direct method of solving this problem would be to specify XD and XB and
calculate the feed composition XF that resulted in the overhead vapor flow meeting
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Operating window for distillation with disturbance
variables as coordinates.

its maximum limit; this approach is possible with a steady-state model solved
using an equation-based approach (Perkins, 1984). The results of the analysis,
performed by either method, are the feasible values of feed rate and composition,
with XD and XB maintained at their desired values; the operating window is given
in Figure 20.6. Again, the interaction is apparent by the shape of the operating
window. The maximum feed rate is attainable with a feed containing the least light
key, because the least amount of distillate product is generated by this feed and
the least distillate requires the minimum overhead vapor.

Con t ro l l ab i l i t y
Another important issue in multivariable control is the independence of the input-
output process relationships between selected manipulated variables (MV/s) and
controlled variables (CV,'s); a process in which the relationships are independent
is termed controllable. Many definitions for the term controllability are used in
automatic control (e.g., Franklin et al., 1990); for the purposes of this book we will
use the following definition, which is appropriate for continuously operating plants
that should attain steady-state conditions (a somewhat less restrictive version of
Rosenbrock's (1974) "functionally controllable (f)"):

A system is controllable if the controlled variables can be maintained at their set
points, in the steady state, in spite of disturbances entering the system.

Controllability is defined for a selected set of manipulated and controlled variables,
and a system may be controllable for one selection and uncontrollable for another
selection. A system's controllability is not always easy to determine by observa-



tion; thus, a quantitative method for determining controllability is presented in this
section. There is no general method for nonlinear systems; therefore, the control
lability of the locally linearized system will be analyzed to evaluate the system. As
a result, the results of the controllability test are strictly valid only at the operating
point at which the linear model is evaluated.

The multivariable dynamic system can be described by a model of the form
given in equation (20.10); only a 2 x 2 system is given, but the extension to
higher orders is straightforward. We will assume that the system begins at steady
state. The definition of controllability will be met if the controlled variables can be
maintained at their set points, so that their deviation variables are zero, by adjusting
the specified manipulated variables in the presence of steplike disturbances, which
achieve a constant value, at least asymptotically. The behavior of the system at
steady state can be determined through the final value theorem. As noted in Chapter
4, the final value theorem can be applied if the output is bounded, which excludes
bounded input-bounded output unstable systems. Applying the final value theorem
to equation (20.10), with CV/(j) = 0 for all /, gives

[SHaMMS]' «»»>
with Kij = lim Gy is) being the steady-state gains.JT—▶O

The system is controllable if there is a solution for this set of linear alge
braic equations for arbitrary nonzero values of Kdx, Kd2, and D' (i.e., all possible
disturbances).
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A solution exists for a square system of linear equations (20.11) when an inverse to
the matrix of feedback process gains (K) exists; thus, the system is controllable if
the determinant of the gain matrix is nonzero.

A square physical system (numbers of manipulated and controlled variables are
constant) is not controllable if any of the following conditions occurs:

1. Any two process inputs are linearly dependent (giving dependent columns).
2. Any two process outputs are linearly dependent (giving dependent rows).
3. A process output is not influenced by any input (giving a column of zeros).
4. A process input does not influence any output (giving a row of zeros).

The controllability test is applied to the two processes in the following example to
ensure that they are controllable.

EXAMPLE 20.5.
Evaluate the controllability of the blending and distillation processes.

The gain matrices and their determinants are
f - F A F ±

Blending iFs + FA)2 iFs + FA)21 . 0 1 . 0
Determinant: -Fs + FA

7^0.0

_. ,.„ .. T 0.0747 -0.0667]Dist.llat.on ^1173 _0.l253j

iFs + FA)2

Determinant: -0.001536 # 0.0
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Since each determinant is nonzero, each process is controllable for the selected
manipulated and controlled variables.

Note that a controllable system indicates that the manipulated variables can
compensate for effects of disturbances on selected controlled variables for some
small region over which the linearization is valid and constraints are not encoun
tered in the manipulated variables. In contrast, the operating window, which is
evaluated using the nonlinear steady-state models including constraints, defines
the entire possible region of operation. Both analyses should be performed to
ensure the possibility of multivariable control.

Finally, the controllability and range of the system are affected by the pro
cess design and operating conditions, along with the selected controlled variables.
Therefore, deficiencies in controllability and range must be compensated through
changes to the equipment or process operating point, not control algorithms.

20.4 n PROCESS INTERACTION: IMPORTANT EFFECTS
ON MULTIVARIABLE SYSTEM BEHAVIOR
We now continue investigating the effects of interaction on multivariable system
behavior, assuming that the process has a controllable input-output selection. The
goal of this section is to demonstrate how the responses of a control system are
influenced by interaction. To simplify the analysis, only relationships for two-
input, two-output systems are considered, but the results obtained can be extended
to control systems of higher order. Insights will be provided in this section through
analyzing several examples and are formalized in the next section.

The first step is to derive the transfer function for the multiloop feedback
control system and determine the main differences from single-loop control. We
begin this procedure by considering the same system (1) without control, (2) with
one controller, and finally (3) with two controllers. First, suppose that a single
controller were to be implemented on the system in Figure 20.4, with the goal
of controlling CVxis) by adjusting MViCs). The transfer function Gu(s) would
have to be considered when tuning the controller, as demonstrated by the transfer
function:

CVxis)
MVxis)

= Gxxis) no control (20.12)

In this case, the control loop could be considered a single-loop system; however,
changes in MVi(j) caused by the controller would affect CV2is) because of in
teraction.

Next, we consider a more complex structure to determine whether it affects
the first loop. The block diagram for a multivariable process with one single-
loop controller is given in Figure 20.7. This example is considered to demonstrate
the effects of interaction on closed-loop systems. The transfer function relating
MVi(j) with CViOs) would have to be considered when tuning the controller
using these measured and manipulated variables. This transfer function follows
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FIGURE 20.7

Block diagram of 2 x 2 system with one single-loop controller.

for the case with Gc2is) implemented:

CVi(j)
MVxis)

= Gxxis)- Gx2js)G2xis)Gc2js)
1 + Gc2is)G22is) Gc2 is) implemented (20.13)

This equation differs from the transfer function with no control of CV2is), equa
tion (20.12), by the second term, and the path represented by the second term is
shown as a dashed line in Figure 20.7. Clearly, this path results from the process
interaction and the second controller. The second term on the right-hand side in
equation (20.13) would be zero if either or both Gxds) and G2lis) were zero,
in which case the controller Gc2is) would have no effect on the transfer func
tion for CVxis)/MVxis). The path shown with the dashed line will be referred
to as transmission interaction and will be seen to have an important influence on
stability.
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Transmission interaction exists when a change in the set point of a controller affects
its controlled variable through a path that includes another controlled variable and
controller.

Note that it is possible to have process interaction [i.e., only Gxds) or G2x is) non
zero] without having transmission interaction, which requires both to be nonzero.

The control design can be completed by applying two single-loop controllers to
the process, as shown in Figure 20.8. The following closed-loop transfer functions
can be determined from block diagram manipulation. (The results for the other
controlled variable, CV2is), can be obtained by transposing the subscripts.)

CVxis) Gcxis)Gxxis) + Gcxis)Gc2[Gxxis)G22is) - Gl2is)G\2is)]
SPxis) CEis)

CVxis) Gc2is)Gl2is)
SPds) CEis)

(20.14)

(20.15)
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FIGURE 20.8

Block diagram of 2 x 2 system with two single-loop controller.

CVi(s)
Dis)

Gdds)
Gd2Gxds)G

[l + Gc2(s)G
£^U[1
22(^)]J

+ Gc2is)G22is)]

CEis)
(20.16)

with the characteristic expression CE(s), which is the same for equations (20.14)
through (20.16),

CECs) = 1 + Gcxis)Gxxis) + Gc2is)G22is)
+ Gcxis)Gc2is)[Gxxis)G22is) - Gl2is)G2xis)]

(20.17)

When both interaction terms Gxds) and G2i(.s) are nonzero, the dynamic
response of a single-loop controller between CVi is) and MVi is) depends on all
terms in the closed-loop transfer function. As a result, the stability and performance
of loop 1 depend on the tuning of loop 2. By a similar argument, the stability and
performance of loop 2 depend on the tuning of loop 1. Therefore,

The two controllers must be tuned simultaneously to achieved desired stability and
performance.

Further insight can be obtained by considering the steady-state behavior of the
multivariable system. In particular, the necessary adjustments in the manipulated
variables can be used as an indication of how interaction changes the system's
behavior. The general steady-state relationship for a 2 x 2 system is expressed
here in deviation variables:

CV\ = KnMV\ + Kl2MV2
CV2 = K2xMV\ + K22MV'2

These equations are often written in matrix form as

(20.18)
(20.19)

KHK] *"-[££] (20-20)



Equation (20.20) can be rearranged to give 631

MV
MV2J"K Lcv2J (20.21)

where K~* is the inverse of the steady-state gain matrix and exists for a controllable
system. Note that equation (20.21) represents the calculation performed by the
controller with zero steady-state offset. For example, equation (20.21) could be
used to determine the steady-state changes in MV\ and MV2 for any specified
changes in CV\ and CV2 (i.e., set point changes). Several hypothetical systems
are considered first so that the extent of interaction can be changed incrementally
from the base model; then some realistic processes are considered.

The process gain matrices in Table 20.1 represent hypothetical systems with
various extents of interaction: A has no interaction iKx2 = K2x = 0); B has
moderate transmission interaction; C has strong transmission interaction; D is not
controllable (the determinant of the gain matrix is zero), and E has one-way in
teraction (£21 = 0). Thus, their behaviors are expected to vary. In particular,
multivariable control is not possible with system D, because it is not possible to
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TABLE 20.1
Summary of manipulated-variable changes for example
systems with differing amounts of interaction

System

Process
gain matrix
K

Inverse
gain matrix
K"1

cv; = 1.0
cv2 = 0.0

No interaction 1.0
0.0

B
Moderate "1.0
transmission 0.75
interaction

[.1.0
0.0

0.0
1.0

0.75] r 2.29 -1.71]
1.0 J [-1.71 2.29J

MV, = 1.0
MV'2 = 0.0
Same as
single-loop

MV, = 2.29
MV'2 = -1.71
Larger than
single-loop

Strong
transmission
interaction

1.0
0.90

0.90
1.0

MV, = 5.26
5.26 -4.74] MV2 = -4.74
-4.74 5.26J Much larger than

single-loop

D
Not
controllable

fl.O 1.0]
[_1.0 1.0J

Singular;
inverse does
not exist

E
One-way
interaction

1.0
0.0

1.0
1.0

1.0
0.0

1.0
1.0

mv; = 1.0
MV'2 = 0.0
Same as
single-loop
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control CV^ and CV2 independently. This system is not considered further, be
cause a process design change would be required to control the selected controlled
variables.

The changes in the manipulated variables required for the specified CV changes
are given in Table 20.1. The manipulated variable changes for systems B and C with
transmission (two-way) interaction differ from the single-loop values reported as
system A. Also, the differences in manipulated variable behavior from system A
increase with increases in the interaction terms. For cases reported in the table,
the manipulations for systems B and C are greater than those for system A, but
for other specified CV changes, systems B and C could be smaller than system
A. The following points summarize the major differences in steady-state behavior
between single-loop and multivariable systems.

1. The values of the manipulated variables that satisfy the desired controlled vari
ables must be determined simultaneously.

2. Differences between single-variable and multivariable behavior increase as the
transmission (two-way) interaction increases.
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Before we conclude this section, two examples of process gain matrices are con
sidered. These examples demonstrate that the behavior shown in Table 20.1 occurs
in realistic chemical processes.

EXAMPLE 20.6.
The first is the blending system shown in Figure 20.2, where the product flow and
composition are controlled by adjusting the flows of the two component streams.
The gains are determined from the linearized model in equations (20.6) and (20.7).
The base conditions are taken to be

Fj = 95.0 kg/min F2 = 5.0 kg/min

Ai = 0.05 wt fraction A F3 = 100 kg/min

The gain matrix and its inverse for these conditions are

Ax
Fs ]-[ -0.0005

1.0
0.0095

1.0
Fx
F2

K - l _ [-100 0.95]~ |_ 100 0.05 J

(20.22)

(20.23)

The gain and inverse matrices have one element that is nearly zero. Thus, the
system is likely to behave similar to system E in Table 20.1. As a result, this system
is not expected to experience very strong departures from the single-variable
behavior in manipulated-variable adjustment magnitudes.

mm
EXAMPLE 20.7.
The second example is the binary distillation tower in Figure 20.3, where the prod
uct compositions are controlled by adjusting the reflux and reboiler flows. The
steady-state gains can be taken from the transfer function matrix in equations
(20.8) and (20.9).

[0.0747 -0.0667] y _ [81.58 -43.42]
|_0.1173 -0.1253J ~ [76.36 -48.63 J (20.24)



The distillation tower appears highly interactive in the two-way manner similar to
systems B and C. To complete this distillation example, steady-state changes in
manipulated variables are calculated for single-loop and multivariable control. In
both cases, the bottoms mole fraction of light key is to be decreased by 0.01. In
the first case, only the bottoms mole fraction is specified and the distillate mole
fraction is not controlled. This is single-loop control, and the necessary change in
vaporization is

Single-loop: AFV = B = ~ ' = 0.0798 kmole/minKxb.v —0.1253
Since the bottoms composition is not controlled, AFR = 0 and AXD £ 0. In the
alternative multivariable case, the distillate mole fraction is maintained unchanged
(AXD = 0), while the bottoms composition is changed by -0.01.

Multivariable: [AFS1 = [81.53 -43.42] [ 0 ]_ [0.4343]
[AFV\ [76.36 -48.63J [-0.01 J ~ |_0.4863J

The results demonstrate that the change in the vaporization in the reboiler
was much larger in magnitude for the multivariable system (0.4863 compared with
0.0798 kmole/min), and in addition, a large change in reflux was required. Clearly,
the interaction has strongly affected the steady-state behavior of the system.

In conclusion, interaction can strongly influence the steady-state and dynamic
behavior of multivariable systems. There exists a range of interaction from com
pletely independent through nearly dependent (i.e., nearly singular), with this in
teraction dependent on the process characteristics, not on control. In general, the
closer the system approaches singularity (system D in Table 20.1), the more its
behavior differs from that of independent loops. The final two process examples
demonstrated that real processes can have interaction similar to the range of ex
amples in Table 20.1. In the next section, a quantitative measure of interaction is
introduced.
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20.5 □ PROCESS INTERACTION: THE RELATIVE GAIN
ARRAY (RGA)

As shown in the previous section, process interaction is an important factor influ
encing the behavior of multivariable systems. A quantitative measure of interaction
is needed to proceed with a multiloop analysis method, and the relative gain ar
ray, which has proved useful in control system analysis, is introduced to meet
this need. The relative gain array was developed by Bristol (1966) and extended
by many engineers, most notably Shinskey (1988) and McAvoy (1983b). In this
section, the relative gain is defined, special properties and methods for calculation
are given, and interpretations for control analysis are presented. The relative gain
array (RGA) is a matrix composed of elements defined as ratios of open-loop to
closed-loop gains as expressed by the following equation, which relates the yth
input and the ith output.

/ d c y \ / a c y \
V d M V - ) \ d M V - )\ J ' M V i = c o n s t , f c ^ / ^ J ' O m c i i u u i j 9 u i J t i i / o n 0 ^ \

kij —
other loops open

/ dCVj \
\dMVj) CWk=const,k î

(acy- \
\ d M V j ) other loops closed
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Consistent with prior terminology, the open-loop gain (Jfy) is the change in
output i for a change in input j with all other inputs constant (for stable processes).
By closed-loop gain we mean the steady-state relationship between MV'j and CV,'
with all other control loops closed (i.e., in automatic). In this definition, it is
assumed that the controllers have an integral mode so that the steady-state values
of the controlled variables are maintained constant (i.e., CV^ = 0 for those under
feedback control). If the relative gain is 1.0, the process gain is unaffected by
the other control loops and no (transmission) interaction exists. Thus, the amount
that the relative gain deviates from 1.0 indicates, in some sense, the "extent" of
transmission interaction in a quantitative manner.

Before control-relevant interpretations of the relative gain are developed, some
important properties must be noted:

1. The relative gain is scale-independent. This is important because rules for
interpretation do not change when the units of a variable change (e.g., from
percent to parts per million).

2. The expression in equation (20.25) suggests that both open- and closed-loop
data is required to determine the relative gain. However, the relative gain can
be calculated from the open-loop data alone, which can be demonstrated by
rearranging equation (20.25) to give

= ( d C Y i \ / 8 M V AH1 V3MvJMVi=consU,AacvJ (20.26)
CV*=const,*#i

The procedure for calculating the relative gain array is to evaluate the open-
loop gain matrix K; calculate its inverse transposed (K_1)T; and multiply
them in an element-by-element manner. This type of matrix multiplication
is referred to as the Hadamard product (McAvoy, 1983b). The following
expression gives the result for each element in the relative gain array, with
Kjj being the elements in the gain matrix and KI<;- being the elements of the
inverse of the gain matrix,

Ay — Ku^ji (20.27)

For a 2 x 2 system, the (1,1) element of the relative gain array can be shown
to be

Xn =
1

1.0- #12^21
Kx 1 #22

(20.28)

3. The rows and columns of the relative gain array sum to 1.0. This property
enables 2x2 systems to be characterized by the Xxx element, as follows:

MV MV2

cv,
cv2

A l l
1 — A.H

1 - A l l
An

(20.29)

4. The relative gain calculation can be very sensitive to errors in the gain calcu
lation. As an example, consider the following relative gain for a 2 x 2 process,
and assume that each process gain can be in error by a factor e,y-, which is 1.0



f o r n o e r r o r . 5 3 5

True An eu €]2 621 €22 An calculated with model errors

1 0 1 . 0 1 . 0 1 . 0 1 . 0 1 0 . 0 N o e r r o r
1 0 1 . 0 1 . 1 1 . 0 1 . 0 1 0 0 . 0
1 0 1 . 0 1 . 2 1 . 0 1 . 0 - 1 6 . 6
10 0 .97 1 .03 1 .03 0 .97 -7 .8 On ly 3% e r ro rs

Since the sign of the relative gain is of great importance in control design
decisions, the sensitivity to model errors demonstrated as the foregoing property 4
must be considered, to prevent incorrect results. Thus, great accuracy is required in
the process gains used for calculating the relative gain. Probably the best method
is to derive an analytical model and evaluate the process gains from analytical
derivatives. This can be done for the blending example using the linearized model
and the foregoing property 2:

r ^ 1 F 2

[A//] =
Fi + F2 Fx + F2

F 2 F x
(20.31)

Fi + F2 Fx + F2 -

However, few complex industrial processes can be accurately modelled by sets
of equations small enough to be conveniently manipulated analytically by hand,
although advances in algebraic processing by computers could change this situation
in the future. Thus, numerical differentiation using steady-state process simulators
is a common approach to evaluating process gains. In this procedure, a separate
simulation is performed at the base case and at a case with each input MV; changed
a small amount from the base case. The process gains are calculated using the
equation below, and the relative gain array is determined from equation (20.27):

CV/(MV,, MV2, ...,MVj + AMV;,...) - CV,(MVi, MV2,...)K
AMVj

(20.32)
Special care is required when using this method because of the accuracy re
quired for the relative gain. When numerical differentiation is used, two potential
causes of errors are introduced: the convergence tolerances in solving the equa
tions and the use of approximate rather than exact derivatives. As demonstrated by
McAvoy (1983fc), the convergence tolerances and AMVs used in equation (20.32)

1
i K x 2 € x 2 ) i K 2 x € 2 x ) ' P r o c e s s I n t e r a c t i o n :1 - 0 - — — T h e R e l a t i v e G a i n
i K x x € x x K K 2 2 € 2 2 ) A r r a y ( R G A )

When the relative gain element has a large magnitude, the relative gain can take
widely varying values and can even change sign for small errors in individual
process gains, as shown by the following example cases. In this example, the
actual values for the gains are Kxx = K22 = 1.0 and Kl2 = K2\ = 0.949,
and the erroneous relative gain is shown for a few example sets of gain errors.
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in calculating the approximate gain must be reduced until the estimated process
gains are not significantly influenced by further reductions in their values. The
conclusion of this analysis can be stated as follows:

The gains Ktj used for calculating the relative gains must be accurate; the use of
gains from l̂inearized fundamental models is recommended. Given the typical errors
in empirical model identification, the use of empirically determined process gains
using methods in Chapter 6 is not recommended for calculating relative gains.

Some very useful control-related interpretations based on the RGA are summarized
as follows and will be used in a hierarchical analysis procedure in the next chapter.

*u <o

ku = 0

0 < kn < 1

An = 1

A; i > 1

ku = CO

In this case, the open- and closed-loop process gains are of dif
ferent sighs. In a 2 x 2 process, if the single-loop (CV, — MV,)
controller gain were positive for stable feedback control, the same
controller gain would have to be negative for stable multiloop feed
back control. Thus, the sign of the controller gain to retain stability
would depend on the mode of other controllers in the multiloop
system—not a desirable situation.
One situation in which the relative gain is zero occurs when the
open-loop process gain (ACV//AMV/ with the other loops open)
is zero, which indicates no steady-state relationship between the
input and output variables. Thus, the controller with this pairing
can function, if at all, only when other controllers are in automatic.
Again, this is not generally a desirable situation but is acceptable
in special circumstances, as explained in the next chapter.
From equation (20.25), the steady-state loop process gain with the
other loops closed [e.g., equation (20.13)] is larger than the same
process gain with the other loops open.
In this situation, there is no transmission interaction, in the sense
that the product of K\2K2x is zero, but either one of the terms may
be nonzero. Thus, a change in MV/ is) is transmitted to CV/ is) only
through Gijis). Note that this does not preclude the possibility that
the manipulated variable might affect another controlled variable
(i.e., one-way interaction).
From equation (20.25), the steady-state loop process gain with the
other loops closed [e.g., equation (20.13)] is smaller than the same
process gain with the other loops open.
When the process gain is zero with the other loops closed, it is not
possible to control the variable in a multiloop system.

As examples, the relative gains for all cases in Table 20.1 and the two process
examples are reported here. (Note that the model for the distillation tower was
developed from very small perturbations in the nonlinear model without noise;
the probability of obtaining an accurate relative gain value from empirical model
fitting is quite small.)



System Relative gain, Xn

A 1.0
B 2.29
C 5.26
D CO

E 1.0
Blending kM-F2 = 0.95 Operating conditions in equation (20.22)
Distillation kxD-FR = 6.09 Operating conditions in Figure 20.3
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These values are consistent with the previous, qualitative evaluations of in
teraction in that systems with relative gain deviating most from 1.0 deviate most
from single-loop behavior. Note that system E with only one-way interaction has
A.ii = 1.0; in general, the relative gain array is the identity matrix for systems
with a steady-state gain matrix that is lower (or upper) diagonal [i.e., with nonzero
entries only on and below (or above) the diagonal].

Finally, the relative gain can be related directly to the closed-loop transfer
function of a 2 x 2 system. To do this, the definition of relative gain has been
extended by Witcher and McAvoy (1977) to include frequency-dependent terms
by replacing the steady-state gains with the corresponding transfer functions. Thus,
the frequency-dependent relative gain is

All is) =
1

Gxds)G2lis) (20.33)
1 -

Gxxis)G22is)

This expression can be used, by setting s = jco, to evaluate the magnitude of the
relative gain elements at various frequencies.

Using the foregoing expression, the characteristic expression (20.17) can be
rewritten as

CEis) = 1 + Gclis)Gxxis) + Gc2is)G22is) + Gdis)Gcds)Gxxis)G22is)
Au(5)

(20.34)
This analysis demonstrates the fundamental nature of the relative gain and the
close relationship between the relative gain and system stability for 2 x 2 systems.

A summary of the key results for the relative gain array follows:

1. The deviation from single-loop behavior, specifically the transmission interac
tion, is related to the difference of the relative gain element from the value of
1.0.

2. The condition of A,;- < 0 results in multiloop systems that, to maintain accept
able performance, must alter the (CV,- - MVj) controller gain or automatic
status, depending on the status of other controllers.

3. A direct relationship between frequency-dependent relative gain and control
system stability has been demonstrated for 2 x 2 systems.
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20.6 a EFFECT OF INTERACTION ON STABILITY
AND TUNING OF MULTILOOP CONTROL SYSTEMS

The final major topic in this chapter is controller tuning. Analysis of the closed-
loop transfer function demonstrates that interaction influences the characteristic
equation and, therefore, stability; thus, controller tuning must consider interaction
as well as the single-loop feedback process dynamics. The following example
provides further insight into the effect of interaction on stability and tuning.
EXAMPLE 20.8.
A dynamic system with the following model is to be controlled by two PI controllers.
The input-output pairings are 1-1 and 2-2 as shown in Figure 20.8. Determine the
allowable range of tuning constants that yield a stable system.

r \.0el0s 0.15e-l0s-
CVxis)
CVds) ] ■

l + 2 s \ + 2 s
0.15e-l0s \.0e~L0s

L \+2s \+2s J

\ MVxis)]
Lmv2(*)J (20.35)

The example system has transmission interaction, because both off-diagonal
elements are nonzero; thus, it would not be correct to tune each controller inde
pendently. The stability limit is determined by the characteristic expression, given
in equation (20.17). Finding the limiting values of the tuning constants would be an
arduous task because all four controller tuning constants iKc\, Tn, Kc2, and Tn)
appear in the characteristic equation and, therefore, all affect stability simultane
ously. To simplify the calculations and allow graphical presentation of the results,
the integral times of the controllers will be held constant at 3.0 min, which are rea
sonable values, being the sum of the dead time and time constant of each transfer
function. Note that this selection will not necessarily yield the best performance,
but it is a reasonable choice for this example calculation.

With the integral times fixed, the characteristic equation has two remaining
tuning parameters, the controller gains.

CE{s) = 1 + Gods) (20.36)
where

— - - ( ' ♦ i H ^ M - i H ^ )

♦ ' • ■ K M - i H ^

-10s \.0e~L0s 0.15e-h0s0.15e-L0s\
Y s \ + 2 s 1 + 2 * \ + 2 s )

To calculate the stability region, one gain (e.g., Kc2) was given a value, and
the Bode stability analysis was performed to determine the ultimate value of KcX
that defines the stability limit. These calculations involve extensive manipulations
of complex numbers and were therefore performed using a computer program.
The results of the calculations are displayed in Figure 20.9. If there had been no
interaction, the stability region would have encompassed the entire box defined by
values of the controller gains of (0,0) and (3.76,3.76) shown in the figure, because
the tuning of one controller would not have influenced the tuning of the other. As
can be seen, the interactions in this example reduced the allowable values for the
controller gains.



1 . 5 2 2 . 5 3
Loop 1 controller gain

3.5

K,c\
FIGURE 20.9

Map of stable and unstable controller gain regions for
Example 20.8 with Tn = T,2 = 3.0.
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TABLE 20.2

Summary of example tuning for 2 x 2 system
Case Kc\ Tn Kci Tn IAE! IAE2 IAE! + IAE2

Figure 20.10a
Figure 20.10b
Figure 20.10c
Figure 20.11

0.95
1.40
0.50
1.23

3.0
3.0
3.0
1.76

0.95
0.50
1.40
0.89

3.0
3.0
3.0
1.06

7.22
4.90

13.7
3.46

5.41
10.3
3.67
2.46

12.63
15.2
17.37
5.92

iMMWKMUsUyi

EXAMPLE 20.9 i

Although all tuning within the defined region yields a stable system, the control
performance is different for various tunings chosen from within the stable region.
To investigate by example the effect of tuning on performance, three sets of tuning
constants were chosen for the system in Example 20.8 from within the stable area
shown in Figure 20.9. The tuning was selected to have a reasonable gain margin
(i.e., margin from the stability boundary). The simulation results for multiloop PI
controllers responding to a CV, set point change of 1.0 for three different tuning
constants are given in Figure 20.10a through c and tabulated in Table 20.2. Figure
20.10a gives equal weight to both controlled variables. Figure 20.10b gives more
importance to controlled variable 1, whereas Figure 20.10c gives more importance
to controlled variable 2. These results demonstrate that controller tuning influences
multiloop system performance, so tuning can be used as a method for adapting
system performance to conform to specific priorities in the importance of controlled
variables. This result will be exploited in the next chapter.

CC
Stamp
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Time Time

Time Time

FIGURE 20.10

Multiloop control: id) with the same gains for both controllers; ib) with loop 1
gain higher.
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Time Time

Time
ic)

Time

FIGURE 20.10 Con't.

Multiloop control (c) with loop 2 gain higher.

Since tuning influences performance, the engineer should be able to use this
flexibility to obtain good control system performance. Three approaches are typi
cally used for tuning multiloop systems, and each is described here.

Trial and Error

Although potentially tedious, a trial-and-error method is often used in practice.
Initial tuning constant values are typically the single-loop values altered for sta
bility, perhaps with the gains reduced by a factor of 2 or more. These initial values
are adjusted through fine tuning, as described in Chapter 9, with trials performed
on a simulation or directly on the process. The final tuning must be conservative
(i.e., not too close to the stability margin) to account for changes in process op
erating conditions that would occur after the trial-and-error procedure has been
completed. Naturally, the success of this approach depends on the expertise of the
engineer, but the approach can reach reasonable results quickly when transmission
interaction is not too strong.

Optimization
An optimization approach, similar to the approach described in Chapter 9 that
optimized a simulated transient response, can be implemented to automate the
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trial-and-error procedure. This approach would require a computer optimization
of the simulated transient response to obtain good initial values for each control
system (Edgar and Himmelblau, 1988). Optimization is justified when process
interaction is strong and the trial-and-error method would be time-consuming or
result in severe process disturbances.

As an example, the tuning for the control system considered in Example 20.9
was optimized for a unit step change in controlled variable 1, assuming equal
importance of the two controlled variables and no other objectives; therefore, the
objective was to minimize the total integral of absolute value of errors (IAEj +
IAE2). The tuning and transient response are given in Figure 20.11 and included
in Table 20.2. The optimization method yielded initial estimates with little engi
neering effort and modest computing resources. The reader is cautioned that the
results in Figure 20.11 are not satisfactory, because of the lack of robustness and
the very aggressive manipulated variable adjustments; a more complete definition
of control performance, including these factors, should be used. However, it does
provide a useful bound for the lowest IAE that can be attained with PI control.

Approximate, Noniterative Approach
A few methods have been proposed for estimating the tuning for multiloop systems
without the time-consuming iterations associated with trial and error or the com
puter computations associated with the optimization approach. The goal of these
methods is to provide initial tuning constants that are much closer than single-loop
tuning constants to the "best" multiloop values. Naturally, fine tuning based on

Time Time

Time Time
FIGURE 20.11

Multiloop control with PI tuning that minimizes £ IAE (tuning is too aggressive).



plant experience is still required. Unfortunately, there is no generally accepted
method for quickly estimating multiloop tuning. The method explained here is se
lected because it provides insight and introduces some key process-related issues.
It also provides a useful correlation for many 2x2 systems; however, it is not
easily extended to higher-order systems.

The method takes advantage of simplifications to determine the tuning for
three cases of limiting process dynamics for 2 x 2 systems with PI multiloop
controllers (McAvoy, 1983a, and Marino-Galarraga et al., 1987). In all of these
cases, the relative importances of the controlled variables are considered equal;
this is the most demanding case for tuning, but other situations are considered in
the next chapter as we tailor the performance to control objectives. The general
approach is to establish how much the PI controller tuning must be changed from
single-loop values when applied in a multiloop system.

The basis of the analysis is the closed-loop characteristic expression (20.34)
divided by 1 + Gc2is)G22is), which does not change the stability limit:

\+Gc2is)G22is)/kxxis)~\
CEis) = \ + Gcxis)G xxis) (20.37)1 -f- Gc2is)G22is) J

As demonstrated in Chapter 10, the closed-loop characteristic expression given by
equation (20.37) determines the stability of the control system. To evaluate poten
tial simplifications, the relative importance of each term must be determined at the
critical frequency of the loop. Since the approach is based on stability analysis,
which considers only the denominator of the closed-loop transfer function, the
same tuning is obtained for all disturbances and set point changes. The method
considers three limiting cases for tuning loop 1: loop 1 much faster than loop 2;
loop 1 much slower; and both loops having the same dynamics. (The following
analysis considers loop 1, but the same results can be obtained for loop 2 by simply
transposing the subscripts.)
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LOOP 1 MUCH FASTER THAN LOOP 2. When the loop 1 process is much
faster than loop 2, the term Gc2ijco)G22ijco) is very small at the loop 1 critical fre
quency because of the tendency of processes to have amplitude ratios that decrease
rapidly after the corner frequency (for example, see Figure 10.13b). Assuming that
A.] i is not a strong function of frequency, as is most often true,

1 -\-Gc2ijco)G22ijco)/kxx
1 + Gc2ijco)G22ijco)

% 1.0

which gives

CE(» « 1 + Gcxijco)Gxxij(o)

(20.38)

(20.39)

Therefore, the very fast loop 1 in this case can be tuned like a single-loop controller
without interaction.

This result confirms a qualitative argument in which we would consider the inter
action from the slow loop to be a slow disturbance to the very fast loop 1, which
could be tuned using single-loop methods.
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LOOP 1 MUCH SLOWER THAN LOOP 2. When loop 1 is much slower,
the term for the fast controller, Gc2ijco), would have a very large magnitude at
the critical frequency of loop 1, because the amplitude ratio of the integral mode
in Gc2ijco) will have a very high value at a frequency much less than the loop 2
critical frequency (see Figure 10.13/). Therefore, \Gc2ijco)\ » 1.0, which leads
to the following simplification in the characteristic equation:

CE(» * 1 + Gcl(»G,,(ja» rGc2(>)G22aa»)A„1
L Gc2ija))G22ijco) J

CE(»^1+Gc l (» Gxxijco) \+Gcxijto) Gxxijco)
(20.41)

As noted, the steady-state relative gain has been used as an approximation
for the frequency-dependent relative gain. In this case, the gain of the process
"seen" by the controller 1 in the multiloop system is changed by 1/Xn from the
single-loop gain iKxx). Therefore,

The slow controller gain can be modified to be the product of the relative gain and the
single-loop tuning, KcML — ikn)iKcSL), to maintain the desired stability margin.
Since the phase lag is not affected, the integral time can retain its single-loop value.

Again, this result seems consistent with a qualitative argument that a very fast
associated loop would "become part of the process" and affect only the closed-
loop process gain.

The tuning result for the slow loop has a potential flaw. When the relative
gain has a value much different from 1.0, the controller gains for the single-loop
and multiloop situations have very different values. Thus, the correct value for the
controller gain depends whether an interacting controller is in automatic or manual!
To ensure that the stability of the slow loop does not depend on the status of the
interacting loop, the slow loop's controller gain is often limited by its single-loop
value, Kcml < Kcsl> If this limit is significantly exceeded, a real-time computer
program could be implemented to monitor the status of the interacting loop and
adjust the controller gain of the slow loop accordingly.

LOOPS 1 AND 2 HAVE THE SAME DYNAMICS. The entire closed-loop
characteristic equation (20.34), as follows, must be considered.

CEis)*\+2Ais) + A2is)
(20.42)

withACs) = Gc\is)Gxxis) — Gc2is)G22is), because the loop dynamics are equal.
With the simplification that all transfer functions in the process, Gyis), have

similar dynamics, the effects of interaction on tuning are completely represented
by the relative gain, and the results can be condensed into detuning correlations
in Figure 20.12a and b (Marino-Galarraga et al., 1987). These figures show how
single-loop tuning must be altered for 2 x 2 multiloop control when all input-output
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FIGURE 20.12

Relationship between single-loop (SL) and multiloop (ML) PI controller
tuning when both loops have similar dynamics.

dynamics are similar. The controller gain is reduced by about a factor of 2.0 as
the relative gain changes from l .0. Also, the integral time increases by a factor of
about 2.0 as the relative gain decreases to 0.5.

Two important conclusions for systems with similar dynamics become appar
ent from this plot:

1. The multiloop controllers must be detuned from their single-loop tuning over
the entire range of relative gain.

2. The change in tuning constants is not very large.

Thus, interaction results in controller detuning, which slows feedback action for
most 2x2 multiloop systems. The tuning results for 2 x 2 PI control presented in
this section are summarized in Table 20.3.

Note that these results are appropriate for systems that satisfy the assump
tions employed. At the current time, there is no approximate method for the gen
eral case with very different dynamics of all paths, Gijis). The trial-and-error or
optimization-based methods must be used in these cases. Also, the importances
of the controlled variables have been assumed to be relatively equal; the case for
unequal importances is covered in the next chapter. The next two examples apply
the tuning approach to realistic processes.
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TABLE 20.3

Summary off example tuning for 2 x 2 system
Situation Characteristic expression Interaction effect

General \+Gcxis)Gxxis) + Gc2is)G22is)
+Gcxis)Gnis)Gc2is)G22is)/kxxis)

Transmission interaction
affects stability

Loop 1 much faster \+Geiis)Giiis) Loop 1 stability is not
strongly affected by
interaction; use single-loop
tuning

Loop 1 much slower* l+Gciis)Gxlis)/kxx Loop 1 stablility is
affected by the change in
close-loop process gain;
multiply single-loop
controller gain by A.n

Both loops with
equal dynamics

\ + 2Ais) + Ais)2/kxx
With Ais) = Gcxis)Gxxis) = Gc2is)G22is)

Loop 1 stability is affected
by changes in gain and
phase; use Figure 20.12

*This approach will lead to a very large controller gain for large A. If the interacting controller is switched to
manual, loop 1 could become unstable. Thus, the additional limit (#c)ml 5 (̂ c)sl is often applied to
ensure stability for both single- and multiloop systems.

§>
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EXAMPLE 20.10.
Determine initial tuning constants for multiloop PI controllers applied to the blend
ing system operating at the conditions given in equations (20.22), 5% A in the
product, and the following sensor dynamics:

Dead time Time constant

Flow
Concentration

1
15

2 sec
30 sec

Consider first the A\-F2 and F3-F| controlled-manipulated variable pairing.
The basis for the tuning values is the linear transfer function models in equations
(20.6) and (20.7) with gain values from equation (20.23), and any single-loop tuning
method could be used. The dynamics above indicate that this case fits the situation
having one fast and one slow loop. Referring to Table 20.3, and noting that An =
k22 = 0.95 % 1.0, both the fast and slow loops can be tuned very close to their
single-loop values. The tuning results using the Ciancone single-loop correlations
are summarized in Table 20.4.

A transient response of this system, simulated using the linearized equations,
for a set point change of 0.01 in the mixed concentration, is given in Figure 20.13.
This is a reasonably well-behaved response, which could be fine-tuned as needed.
An important result of this analysis is that the tuning for this loop pairing does not



TABLE 20.4

Tuning for the blending system with dilute product (x„, = 0.05, X = 0.95)

Ai-F2 (con t ro l le r F3-F] controller
(slow loop) (fast loop)

TUning term Single- loop Mul t i l oop Single- loop Mu l t i l oop

Process gain Ku = 0.0095 AT„A„=0.01 K22 = 1.0 K22 = 1.0
9/iO + x) 0.333 0.333 0.333 0.333
KcKp 1.0 1.0 1.0 1.0
Ti/iO + x) 0.85 0.85 0.85 0.85
Kc (kg/min/wt fraction) 105.0 100.0 1.0 1.0
Ti (sec) 38.0 38.0 2.6 2.6
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FIGURE 20.13
Set point response for multiloop blending system in Example 20.10.

change significantly from single-loop to multiloop; in other words, the tuning of the
controllers does not depend on the control status (automatic/manual) of the other
controller. This is a good situation.

Now consider the alternative loop pairing, Ai-F| and F3-F2. Again, the system
consists of a fast and slow loop, so that the same approach can be used. How
ever, in this system, the relative gain has a value far from unity, AM = k22 = 0.05.
Therefore, the response of the slow loop iAx-F\), which has an effective process
gain of Ku/ku, is significantly altered by interaction. The results, using the rec
ommendations in Table 20.3 and the Ciancone single-loop tuning correlations, are
summarized in Table 20.5.
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TABLE 20.5

Tuning for the blending system with dilute product ixm = 0.05, k = 0.05)

A , -Fx pairing Fy-F2 pairing
(slow loop) (fast loop)

Tuning term Single- loop Mu l t i l oop Single- loop Mul t i l oop

Process gain Kxx =-0.0005 Kxx/kxx = -0.0\ K22 = 1.0 £22 = 1.0
6/iB + x) 0.333 0.333 0.333 0.333
KCKP 1.0 1.0 1.0 1.0
Ti/i0 + r) 0.85 0.85 0.85 0.85
Kc (kg/min/wt fraction) -2000.0 -100.0 1.0 1.0
Ti (sec) 38.0 38.0 2.6 2.6

The transient response of the multiloop system with the multiloop tuning given
in Table 20.5 is essentially the same as that for the previous pairing and is not
shown. However, the single-loop and multiloop tunings are very different in Table
20.5, because the relative gain is much different from 1.0. If both loops are in
automatic, the A] controller gain must be the (small) multiloop value given in the
table. When the F3 controller is in manual, the effective process gain for the Ai
controller changes to its single-loop value (which is lower by a factor of about 20).

A summary of the implications of the multiloop system in Table 20.5 follows:

Tuning of Ax Single-loop (A,) system Mult i loop system

Single-loop
iKc = -2000)
Multiloop
iKc = -100)

Good performance

Poor performance
(very slow)

Unstable system

Good performance

€g=^: y£

Thus, the controller tuning in Table 20.5 must be matched to the status of
the controllers—a situation to be avoided if possible. This complexity in updating
tuning online suggests that the pairing in Table 20.4, which can have the same
tuning for any combination of loop statuses (since k & 1.0), is a much better
choice.

EXAMPLE 20.11.
Determine initial tuning constants for the distillation tower with the pressure and
level controller pairings given in Figure 20.3, resulting in the model in equations
(20.8) and (20.9). Evaluate the dynamic behavior for a step change in the feed
light key of -0.04 mole fraction light key.

This process has similar dynamics for both loops, so that the summary in
Table 20.3 recommends the tuning correlations in Figure 20.12. The large value



TABLE 20.6

Tuning analysis for distil lation control system

Xd-F r con t ro l l e r XB-FV con t ro l l e r
■ u i i i i i v j i c n i i

(A = 6.09) Single-loop Multiloop Single-loop Multi loop
Process gain 0.0747 K22 = -0.1253
0/(0 + x) 0.20 0.16
KcKp 1.55 1.7
T,/iO + x) 0.60 0.50
Kc 20.75 Kcsl/2 = 10.4 -13.6 Kcsl/2 = —6.8
T, 9.0 9.0 6.1 6.1
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Example disturbance response for multiloop distillation in Example 20.11.

of the relative gain (6.09) indicates that the controller gains must be reduced by
a factor of 2.0 from their single-loop values, and the integral times can remain
unchanged. The results from applying this approach are given in Table 20.6, and
a dynamic response of the multiloop system, using the multiloop tuning from the
table, is shown in Figure 20.14. The response is well behaved, because the con
trolled variables return to their set points reasonably quickly and the manipulated
variables experience moderate adjustments. Thus, the correlations provide ac
ceptable initial tuning, which can be tailored to specific objectives through fine
tuning.
Ia l3 iSM?M^»^S!^^
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20.7 m ADDITIONAL TOPICS IN INTERACTION ANALYSIS
The material on interaction in this chapter is only introductory, and a coverage of
much more material would be required for a mastery of the topic. Some of the key
additional topics are reviewed briefly in this section.

Modelling
Models for multivariable control should be developed with their ultimate use
in mind. Recent results on model consistency (Skogestad, 1991; Haggblom and
Waller, 1988) give useful relationships that can be used to verify that linearized
models observe fundamental properties of the nonlinear system. Also, new exper
imental designs (Kwong and MacGregor, 1994) could be of use in obtaining better
empirical estimates of process gains, but even with these careful experimental steps
the use of empirical models for calculating relative gains with large magnitudes is
problematical.

Interaction Measures
The important features of systems with transmission interaction discussed in Sec
tion 20.3 can be developed through singular-value analysis for systems of arbi
trary size and dynamics. The relevant matrix, here the process gain matrix K,
can be decomposed into three matrices, which can be used to determine the di
rections in the CVs that cause the manipulated variables to change the "most"
and the "least" (as measured by the root sum of squares of the changes in the
MVs). Also, the ratio of the largest to the smallest changes in these two direc
tions can be determined and is called the condition number. Clearly, the larger
the condition number, the more interaction affects the multiloop system. Also,
the condition number indicates the sensitivity of the calculation to model errors.
The basic mathematics of this analysis is presented in Ortega (1987), and con
trol applications are given in Barton et al. (1991) and Arkun (1984). The rela
tionship between the relative gain and condition number is given by McAvoy
(19836) and Grosdidier et al. (1985). An alternative measure of interaction has
been proposed by Grosdidier and Morari (1987). Finally, the controllability and
relative gain calculations can be extended to systems with pure integration, such
as liquid levels, by replacing the derivative of the variable idL/dt) with a sur
rogate variable £ and proceeding with the standard method thereafter (McAvoy,
19836).

Frequency-Dependent Measures
The material in this chapter on controllability and interaction relied principally on
steady-state measures. The definition of controllability used here involves steady-
state behavior. An alternative frequency-dependent definition involves the ability
to influence the dynamic trajectory of the output variables and requires that det
Gis) ^ 0 (Rosenbrock, 1974). Since this book deals mainly with continuous pro
cesses operated at specified steady-state conditions, the definition of controllability
used here involves steady-state ico = 0) controllability.



In addition, the effects of interaction should be evaluated near the critical
frequencies of the control loops. Frequency-dependent interaction is discussed by
McAvoy (1981).
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Tuning
Another approach to tuning multiloop PID controllers that seems to have met
with success is presented by Monica et al. (1988). This method can be extended
to higher-order systems with frequency response calculations. The definition of
modelling errors to be considered in tuning multivariable systems is much more
difficult, because errors in the individual transfer functions and parameters within
an individual transfer function are not independent.

20.8 n CONCLUSIONS

Multiloop process control systems have been introduced, and the important con
cept of process interaction defined. Standard modelling methods can be used to
represent the input-output behavior of the process without control. Interaction—
one input affecting more than one output—is seen to influence the behavior of
multivariable systems. Using the convention that the single-loop controllers are
paired on the 1-1 and 2-2 elements in a two-variable process, interaction occurs
when at least one of the interacting terms, Gxds) or G2x is), is nonzero. The pro
cess model can be employed to determine a useful measure of interaction: the
relative gain array.

Requirements of controllability and values for relative gain are really exten
sions of conditions that are required for good single-loop feedback control, as
summarized in the following table.

Required
cond i t i on Single- loop system Mult ip le- loop system

Controllability A causal relationship
exists between the manipulated
and controlled variables, Kp£0

n independent, causal
relationships exist between
the manipulated and controlled
variables, det K # 0.

>^,:Wk->-V- H

Since the requirements are less obvious in multiloop systems, the rigorous math
ematical tests are provided.

Transmission interaction—the additional connection path between an input
and output through an interacting controller—occurs when both interacting terms
in a 2 x 2 system are nonzero. Transmission interaction can strongly affect the be
havior of a multivariable system. First, depending on the directions of the desired
changes in controlled variables, it can substantially influence the adjustments re
quired in the manipulated variables. Second, it can influence the system's stability
and proper controller tuning.
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Some of the results introduced in this chapter are general for all multiloop
systems of any order (n x n), while some are restricted to two-variable (2 x 2)
systems. The following summary is provided to help the reader.

n x n systems 2x2 systems only

Modelling
Controllability
Relative gain array definition,
equation (20.25)
Relative gain calculation,
equation (20.27)
Interpretations of relative
gain in Section 20.5

Closed-loop transfer function,
equations (20.14) to (20.17)
Relationship between RGA and
stability, equation (20.34)
PI tuning, Section 20.5

Finally, an important interpretation concerning control performance can be
reached from these tuning results by considering a system having similar dynamics
and a relative gain much larger than 1.0. (Many important processes have large
relative gains.) In this system, the multiloop process gain is smaller than the single-
loop process gain by a factor of about 1 /k, as shown in equation (20.25). However,
stability and tuning analysis indicated that the controller gain in the multiloop
system must be reduced from its single-loop value, as shown in Figure 20.12! As a
result, the reduction in effective process gain caused by interaction in the multiloop
system cannot be compensated by an increase in the controller gain; if an attempt
is made to increase the controller gain to improve control performance, the system
will become unstable! Thus, the product KpKc can be small (i.e., very much less
than 1.0) in the interactive system, and feedback adjustments in response to some
disturbances can be very slow because of this "detuning" effect of interaction. This
stability limit for multiloop systems accounts for the very slow return to set point
experienced by some processes with large relative gains.

To this point, general interpretations of multiloop system behavior have been
developed. The many useful insights and quantitative expressions for the effects
of interaction on multivariable behavior and stability will be exploited in the next
chapter on multiloop control performance, in which specific methods for tailoring
control design to performance goals are presented.
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The material in the chapter enables the engineer to evaluate the suitability of candi
date processes and variables for multiloop control quantitatively. Specifically, con
trollability and operating window (or range of operation) can be used to establish
the feasibility (or infeasibility) of feedback control for potential process designs.
Interpretations of the relative gain suggest that only variable pairings with ky > 0
for 2 x 2 systems should normally be considered further (but see Chapter 21 for
important exceptions). Also, the effects of interaction on tuning are demonstrated
by some preliminary tuning rules for 2 x 2 systems. The methods in this chapter
enable the engineer to eliminate some candidate designs as infeasible for multiloop
control, so that future effort can be directed toward evaluating the remaining feasible
candidates.

QUESTIONS
20.1. For the blending process in Figure 20.2, design a control system to control

the following three product variables at independent values: id) the total
flow (F3), ib) the mass fraction of component A, and (c) the mass fraction



of component S. You may assume that both mass fractions can be measured
by the analyzer Ai.

20.2. Answer the following questions for two physical processes: (1) the chemi
cal reactor described in Section C.2 of Appendix C and (2) the same chem
ical reactor with no heat of reaction. Both processes have two feedback PI
controllers: T -* Fc and Ca -*• Cao (with F unchanged).
ia) Does process interaction influence the stability of the closed-loop sys

tem? Provide quantitative analysis to support your conclusion.
ib) Does process interaction influence the dynamic behavior of the closed-

loop system? Explain your answer briefly.
20.3. Prove the statements made in this chapter about the relative gain array:

ia) The elements are scale-independent, ib) The sum of values in a row or
column is 1.0. (c) the A,/; in equation (20.27).

20.4. Verify the closed-loop transfer functions in equations (20.12) through (20.17).
20.5. Answer the following question about controllability.

ia) How must the controllability test be modified when a constraint (bound)
is encountered in one or more manipulated variables?

ib) Develop an alternative definition of controllability and develop a math
ematical test for the situation in which the controlled variables must
only achieve specified values at a single point in time. This might be
valid for batch control or for intercepting a missile.

ic) Relate the definition of controllability used in this chapter to the relative
gain array.

id) How would the test for controllability in Section 20.3 be modified if
the control algorithms were implemented via digital calculation?

ie) How far can one extrapolate the conclusions of the controllability test
to other operating conditions?

20.6. Determine the controllability and possible loop pairings (A. > 0) for the
process in Figure Q20.6 for the following two situations. The feed consists
of only solvent and component A. The manipulated variables are the valves,
and the controlled variables are the level and the composition of A, Ca-
ia) The situation without chemical reaction (i.e., a mixing tank).
ib) The situation with a single chemical reaction A -> B, r& = —kC .̂

20.7. Consider the CSTR in Figure Q20.7 in which solvent and component A in
solvent (Cao) are mixed. The two streams can be at different temperatures.
A single reaction A -▶ B occurs in the reactor. The rate expression is
rA = —kCp,, and the heat of reaction can be nonzero. The manipulated
variables are the flow rates of the two inlet streams, and the controlled
variables are the temperature and concentration of A in the reactor.
id) Determine under what conditions the system is controllable.
ib) For the conditions which are controllable, if any, determine allowable

loop pairings (X/y > 0).
20.8. Answer the following questions for a 2 x 2 control system with PI con

trollers.
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id) Is it possible for tuning values to exist that would yield a stable multi
loop system and an unstable single-loop system for the same process?

ib) Is it possible for tuning values to exist that would yield an unstable
multiloop system and a stable single-loop system for the same process?

ic) State the criteria for the single-loop system in Figure 20.7 to be stable.
id) Suggest a manner for using the results in Example 20.8 in tailoring the

dynamic performance to control system goals.
20.9. The following transfer function was provided by Waller et al. (1987) for

a distillation column with the levels and pressure controlled with single-
loop controllers as in Figure 20.3. The product qualities were not measured
directly; they were inferred from tray temperatures (°C) near the top, T*,
and near the bottom, T\$, trays. The manipulated variables are the reflux,
Fr, and reboiler steam, Fs, both in kg/h. Time is in minutes.

-0.045*r0-5* 0.048*?-
r Tds) 1 _
[Tids)}

8.15 + 1
-0.23«-1'5f

,-0.5* -|

11 5 + T
0.55e-°-55

FR{
Fs

is)]
is)}

Flue gas

L 8.15+1 105 + 1 J
Answer the following questions for this system.
id) Determine whether the input-output combination is controllable.
ib) Determine if either loop pairing can be eliminated based on the relative

gains ikij > 0).
ic) Determine the initial tunings for PI controllers for all allowable loop

pairings.
id) Estimate whether the interaction affects the magnitude of the manipu

lated variable changes for a set point change between single-loop and
multiloop control.

20.10. The outlet temperature of the process fluid and the oxygen in the flue gas
can be controlled in the fired heater in Figure Q20.10 by adjusting the fuel
pressure (flow) and the stack damper % open. A dynamic model for the
fired heater in Figure Q20.10 was reported by Zhuang et al. (1987) and is
repeated here:

0 . 6 - 0 . 0 4
Tis) '
Ais)

240052 + 855 + 1
-1.1

300052+905 + 1
0.30

P*(s)
vds)

Fuel
FIGURE Q20.10

7 0 5 + 1 7 0 5 + 1
The inputs and outputs are in percent of the range of each instrument, and
the time is in seconds.
id) Determine whether the input-output combination is controllable.
ib) Estimate whether the interaction changes the magnitude of the manip

ulated variable changes for a set point change between single-loop and
multiloop control.

(c) Determine if either loop pairing can be eliminated based on the relative
gains ikij > 0).

id) Determine the initial tunings for PI controllers for all allowable loop
pairings.



20.11. Three CSTRs wi th the configurat ion of Sect ion C.2 and wi th the fo l lowing 657
design parameters are considered in this example; the common data is given mammmmnM^tM
below, and the unique data and steady states are given in Table Q20.11 for Questions
three cases.

F = 1 m3/min, V = 1 m3, CA0 = 2.0 kmole/m3, Cp = 1 cal/(gK),

p= 106g/m3,fc0= 1.0 x 1010 min-1, E/R = 8330.1 KT1
iFe)s = 15 m3/ min, Cpc = 1 cal/(g K), pc = IO6 g/m3, b = 0.5

The controlled variables are Ca and T, and the manipulated variables
are Cao and Fc. Answer the following questions for each chemical reactor
and explain the differences among the designs. (Note that this question
requires the linearized, steady-state model for each case.)
id) Determine whether the input-output combination is controllable.
ib) Estimate whether the interaction changes the magnitude of the manip

ulated variable changes for a set point change between single-loop and
multiloop control.

ic) Determine if either loop pairing can be eliminated based on the signs
of the relative gains.

id) Determine the initial tunings for PI controllers for all allowable loop
pairings.

ie) Evaluate the transient responses for a concentration set point change
of +0.02 kmole/m3.

TABLE Q20.11

C a s e I I I I I I

-AtfrxnlO^al/fkmole) 130 13 - 3 0
a (cal/min)/K 1.678 x IO6 1.678 x IO6 0.7746 x IO6
T0K 323 370 370
Tcin K 365 365 420 (heating)
TSK 394 368.3 392.7
Cas kmole/m3 0.265 0.80 0.28

20.12. Discuss an empirical method for identifying the inverse of the process gain
matrix directly from experimental data.

20.13. Determine whether K(K)-1 would give the same (correct) result as equa
tion (20.27) for the elements of the relative gain array.

20.14. The process with two series chemical reactors in Example 3.3 is consid
ered in this question. The process flexibility is increased by allowing the
temperatures of the two reactors to be manipulated independently. The two
controlled variables are the concentrations of reactant A in the two reactors.
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The rate constant can be expressed as 5.87 x iô -5000/7" (with temperature
inK).
id) Determine whether the input-output combination is controllable.
ib) Determine if either loop pairing can be eliminated based on the signs

of the relative gains (X,;- > 0).

20.15. The following transfer functions were provided by Wood and Berry (1973)
for a methanol-water separation in a distillation column similar to Figure
20.3. The products are expressed as mole % light key, and the reflux FR
and reboiler steam Fs are in lb/min. Time is in minutes.

\XDis)]_L**(*)J
12.8e" -3s -x

16.1s +1
6.6e"7*

-18.9g
215 + 1

-\9.4e~3s
L 10.95 + 1 14.45 + 1 J

\FRis)]
L Fs(s) J

id) Determine whether the input-output combination is controllable.
ib) Estimate whether the interaction changes the magnitude of the manip

ulated variable changes for a set point change between single-loop and
multiloop control.

(c) Determine if either loop pairing can be eliminated based on the sign
of the relative gains (X,;- > 0).

id) Determine the initial tuning for PI controllers for all allowable loop
pairings.

ie) The model was determined empirically. Discuss the effects of likely
model errors on the results in parts id) to id).

20.16. A series of nonisothermal CSTRs shown in Figure Q20.16 is analyzed
in this question. The heat transfer is adjustable in each reactor, so that
each reactor temperature can be considered a manipulated variable. The
feed contains only a nonreacting solvent and component A. The potential

-t&H
'AO

&
-&y

♦ ^

e -t&r-

' f
FIGURE Q20.16



manipulated variables are Tx, T2, F, V|, V2, and CAo- The variables to be
controlled to independent steady-state values are the compositions of B and
C in the effluent from the second reactor. For each of the sets of elementary
reactions given below, determine (1) for which sets of two manipulated
variables the system would be controllable and (2) for the variables selected
in (1), whether either pairing of variables could be eliminated based on the
relative gain.
i a ) A^B-^C
ib) A-^-B + C
Assume that the rate constants can be expressed as Arrhenius functions of
temperature and the heat of reaction is zero.

20.17. The mixing tank in Figure Q20.17 has two independent inlet streams of pure
A and B that can be manipulated. The outlet flow cannot be manipulated by
the unit; it is set by a unit of higher priority. The composition, the weight
percent of B, and the level are to be controlled.
ia) Derive a linearized model of the system.
ib) Determine whether the system is controllable.
ic) Calculate the relative gain array for this process and make conclusions

about the possible loop pairings for this system.

20.18. A proposal is made to control the temperature (T) and composition (Ca)
in the chemical reactor in Figure Q20.18 by manipulating the feed flow
and the inlet temperature. The chemical reaction is A -» B, with r^ =
—£Ca and no heat of reaction. The flow in the pipe is laminar, so that
the flow out can be taken to be proportional to level, F = KL. The data
for this system at the base case operation is the same as for Example 3.2;
in addition, the temperature is 323 K and the reaction rate constant is
* = 2.11xlOV500°/7'.
(a) Derive the linearized model for this system in deviation variables.
ib) Determine whether the system is controllable in the steady state.
ic) Derive the four individual single input-output transfer functions.
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5 6 0 i d ) E v a l u a t e t h e r e l a t i v e g a i n , b o t h a t s t e a d y s t a t e a n d a s a f u n c t i o n o f
i m ^ . : ^ ^ ^ ^ ^ ^ ! . ^ ; ; : 1 ; - ^ ! f r e q u e n c y. E x p l a i n t h e d i f f e r e n c e s .
CHAPTER 20 (e) Select a feasib le loop pair ing and design a control system.
Multiloop Control:
Effects of Interaction 20.19. Evaluate the controllability and the interaction for the blending and distil

lation processes modelled in Section 20.2. Discuss the differences, if any,
between the steady-state and frequency-dependent results.

20.20. The analysis of multiloop tuning summarized in Figure 20.9 considered
only positive controller gains. Discuss the control performance when one
of the controller gains is allowed to be negative.




