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19.1 D INTRODUCTION
Most modifications to single-loop feedback control presented in this part of the
book have used additional measurements to improve control performance. In con
trast, the emphasis in this chapter will be on an alternative to the proportional-
integral-derivative (PID) feedback algorithm. The PID controller was introduced
in Chapter 8 by explaining the features associated with each mode and by demon
strating that the combined modes could provide reasonable control performance.
In subsequent chapters the applications of PID in feedback, cascade, and combined
feedforward/feedback have indicated that the adoption of PID as the standard algo
rithm in the 1940s was an appropriate choice. Perhaps the most remarkable feature
of the PID is the success of this single algorithm in so many different applications.

However, the development of the PID lacked a fundamental structure from
which the algorithm could be derived, limitations could be identified, and enhance
ments could be developed. In this chapter a general development is presented that
gives great insight into the roles of both the control algorithm and the process in
the behavior of feedback systems. This development also provides a method for
tailoring the feedback control algorithm to each specific application. Because a
model of the process is an integral part of the control algorithm, the controller
equation structure depends on the process model, in contrast to the PID controller,
which has only one equation structure.

Although the control algorithm is different, the feedback concept is unchanged,
and the selection criteria for manipulated and controlled variables are the same as
explained in Chapters 1 and 7. In fact, the algorithms presented in this chapter



584

CHAPTER 19
Single-Variable Model
Predictive Control

could be used as replacements for the PID controller in nearly all applications so
far discussed. Generally, the PID controller is considered the standard algorithm; an
alternative algorithm is selected only when the alternative provides better control
performance.

The derivation of control algorithms is based on the predictive control structure
introduced in the next section. Many methods are possible for deriving practical
control algorithms to be implemented within the predictive structure, and two of
these—internal model controller (IMC) and Smith predictor—are explained in
detail, along with guidance on implementation issues. Finally, some applications
are presented in which predictive controllers offer potential improvements over
PID. In addition to introducing some very useful single-loop control methods,
this chapter offers an opportunity for another perspective on the fundamentals of
feedback control and an introduction to the predictive control structure shown to
be well suited to multivariable control in Chapter 23.

19.2 m THE MODEL PREDICTIVE CONTROL STRUCTURE
The predictive control structure is based on a very natural manner of interpret
ing feedback control. Before the general predictive structure is developed, it is
worthwhile to consider the typical thought process used by a human operator im
plementing feedback control manually. Assume that the three-tank mixing process
in Figure 19.1a is initially at steady state, and the goal is to reduce the outlet con
centration by adjusting the flow of component A. First, the operator estimates the
amount of change in the valve position (controller output) required to achieve the
desired steady-state change in the controlled variable. This estimate requires an
estimate of the steady-state model of the process (i.e., Kp). The operator can then
estimate the proper adjustment in the valve position to be Av = iAxA)i/Kp.

Next, the operator would decide whether to implement this entire adjustment
in one step or to introduce the change in several smaller steps. If the decision
were to introduce the entire adjustment in one step, the dynamic response might
look like the initial transient in Figure 19.lb. The person waits until steady state
is achieved to observe the response and determine whether the estimate was cor
rect. In this example, the concentration change was too large in magnitude, as is
shown by a difference between the actual and predicted changes in the concen
tration. As a result of this error, the operator would have to make another change
in the valve position. A clever operator might conclude that the assumed gain is
incorrect and modify the estimate of Kp; however, the operator in this example
applies a more straightforward approach, in which the next correction is based
on the same value of the process gain; that is, Av = iAxp,)2/Kp, where (AjtAh
is the difference between the predicted and actual Ajca- Several iterations of the
procedure result in the transient response achieving steady state, as given in Fig
ure 19.1.

The approach used by the operator has three important characteristics:

1. It uses a model of the process to determine the proper adjustment to the
manipulated variable, because the future behavior of the controlled variable
can be predicted from the values of the manipulated variable.
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Example of manual control.
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2. The important feedback information is the difference between the predicted
model response and the actual process response. If this difference were zero,
the control would be perfect, and no further correction would be needed.

3. This feedback approach can result in the controlled variable approaching its
set point after several iterations, even with modest model errors.

These characteristics provide the basis for the predictive control structure.
A continuous version of the approach just described can be automated with the

general predictive control structure given in Figure 19.2. Three transfer functions
represent the true process with the final element and sensor, Gpis)\ the controller,
Gcpis)', and a dynamic model of the process, Gmis). To avoid confusion, the term
predictive control algorithm will be used to denote the calculation represented by
GCpis), which is used for the controller in the block diagram in Figure 19.2. The
term predictive control system will be used to denote all calculations in the control
system, which includes the predictive control algorithm, the predictive model, and
two differences. All calculations in the predictive control system must be executed
every time a value of the final element is determined.

The feedback signal Em is the difference between the measured and predicted
controlled variable values. The variable Em is equal to the effect of the disturbance,
Gdis)Dis), if the model is perfect [if Gmis) = Gpis)]; thus, the structure high
lights the disturbance for feedback correction. However, the model is essentially
never exact, so that the feedback signal includes the effect of the disturbance and
the model error, or mismatch. The feedback signal can be considered as a model
correction; it is used to correct the set point so as to provide a better target value,
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FIGURE 19.2
Predictive control structure.

Emis)

Tpis), to the predictive control algorithm. The controller calculates the value of
the manipulated variable based on the corrected target.

The following closed-loop transfer functions for responses to set point and
disturbances can be derived through standard block diagram algebra.

Gcds)Gds)G'pis)CVis)
SPis)

CVis)
Dis)

1 + GGpis)[Gds)Gfpis)Gsis) - Gmis)]

Gcpis)Gpis)
l+Ge?is)[Gpis)-Gmis)]

[1 - Gcds)Gmjs)]Gds)
1 + Gcds)[Gds)G'pis)Gds) - Gmis)]

[I - Gcds)Gmis)]Gds)

(19.1)

(19.2)

l + Gepis)[Gpis)-Gmis)]
In all further transfer functions in this chapter, the dynamics of the sensor are

considered negligible, and the overall model of the final element and process is
taken to be Gpis). A linear dynamic process model, Gmis), can be determined
using fundamental (Chapters 3 through 5) or empirical (Chapter 6) modelling
methods. The controller algorithm, Gcpis), for the predictive structure is as yet
unknown and will be determined to give good dynamic performance.

A few properties of the predictive structure are now determined that establish
important general features of its performance and give guidance for designing the
controller, Gcp(.s). Normally, a very important control performance objective is
to ensure that the controlled variable returns to its set point in steady state. This
objective can be evaluated from the closed-loop transfer functions by applying
the final value theorem and determining whether the final value of the controlled
variable, expressed as a deviation variable from the initial set point, reaches the
set point. The application of the final value theorem for this purpose is performed
for the following conditions:

1. The input is steplike, in that it reaches a steady state after a transient, SPis) =
ASP/5 and Dis) = AD/s.



2. The process without control reaches a steady state after a steplike input,
GpiO) = KP and GmiO) = Km.

3. The closed-loop system is stable, which can be achieved via tuning.

Note that the use of the steady-state gain of the process, GpiO), limits the results to
stable processes without control.
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In fact, the results in this chapter are limited to these stable processes. Under
these conditions, application of the final value theorem yields

ASP Gcp(0)Gp(0)
limCV(0 = limsCV(s) = .y' - > « > * - o s \ + G c d O ) [ G p i O ) - G m i O ) ]

= ASP if and only if Gcp(0) = G~l (0)

AD [I - Gcd0)Gmi0)]Gd0)Urn CVit) = Mm sCVis) = s' - > « > * - o s l + G c p ( 0 ) [ G p ( 0 ) - G w ( 0 ) ]
- !

(19.3)

(19.4)
= 0 if and only if Gcp(0) = G"' (0)

Therefore, the predictive control system will satisfy both of the foregoing equa
tions, thus providing zero steady-state offset for a steplike input, if

Gcp(0) = G"1(0) or K^ = \/K{ (19.5)
Equation (19.5) requires that the steady-state gain of the controller algorithm must
be the inverse of the steady-state gain of the dynamic model used in the predictive
system. This important requirement can be easily achieved, because the engineer
has perfect knowledge of the model, although certainly not of the process Gpis)
itself.

A stable predictive system does not require a perfect model; it must only satisfy
equation (19.5) to return the controlled variable to the set point at steady state.

To gain further insight into the predictive structure, the next control perfor
mance objective considered is perfect control. Here, the term perfect control is
taken to mean that the controlled variable never deviates from the set point. As we
have seen, this performance is not possible with feedback control and might not
generally be desired because of other control performance considerations. How
ever, it is considered here to provide insight into the predictive system and to give
further guidance on control algorithm design. The closed-loop transfer functions
in equations (19.1) with CVis)/Dis) = 0 and (19.2) with CV(s)/SP(s) = 1 pro
vide the basis for the following condition, required for the controlled variable to
be equal to the set point at all times during the transient response:

- lGcds) = G~lis) (19.6)
Thus, perfect control performance would be achieved if the controller could be set
equal to the inverse of the dynamic model in the predictive system. This might seem



588

CHAPTER 19
Single-Variable Model
Predictive Control

to be a simple requirement, since any model, even a constant, could be used for the
model, and the controller would be easily evaluated as the inverse. However, block
diagram algebra can be applied to derive the following condition for the behavior
of the manipulated variable under perfect control:

M V i s ) - G d s ) G c d s )
Dis) \ + Gcpis)[Gpis)-Gmis)]

-Gdjs)Gepis) = Gds)
1 + Gcp(s)Gp(s) - 1 Gpis)

(19.7)

This shows that the perfect control system must invert the true process in some
manner. The following are four reasons why an exact inverse of the process is not
possible:

1. Dead time. In most physical processes, the feedback transfer function includes
dead time in the numerator. The application of equations (19.6) and (19.7) to
a typical process model with dead time gives, when the model is factored into
two terms with gmis) all polynomial terms in s,

,-9s - \ J sGmis) = gmis)e-*5 Gcp(s) = [Gmis)Vl = [*„(*)]-V (19.8)
The perfect controller in this situation would have to include the ability to
use future information in determining the current manipulated-variable value,
as indicated by the predictive element e0s. As discussed in Section 4.3, such
noncausal models are not physically realizable—such behavior cannot occur
(except in science fiction).

2. Numerator dynamics. As demonstrated in Section 5.4 on parallel process
structures, some process models have dynamic elements in the numerators of
the feedback transfer functions. Application of equation (19.6) to an example
gives

Gmis) = K
T2S + 1

(TU + D2
- 1Gcds) = [G,ds)rl =

l ins +1)2 _ mv(j)~ Tpis)

(19.9)
K T2S + \

For all values of t2 the controlled-variable behavior would be stable, because
the product Gcp(s)Gm(s) = 1. However, the controller algorithm alone would
be stable only for x2 > 0 and would be unstable for t2 < 0. (This is termed a
right-half-plane zero in Gm is), leading to a right-half-plane (unstable) pole in
Gcpis).) An unstable controller would be expected to cause the manipulated
variable to behave in an unstable manner, as is demonstrated in Example
19.2. Thus, the controller in equation (19.9) would not be able to achieve the
"perfect" performance when r2 < 0.

3. Constraints. The manipulated variable must observe constraints. These could
be physical constraints, such as a valve, which is limited to 0 to 100% open,
or more limiting constraints, such as the fuel to a furnace, which must be
above a minimum limit greater than zero to maintain a stable flame. There is
no guarantee that the controller defined in equation (19.6), which was derived
using linear equations that did not consider constraints, would observe the
constraints. Thus, in some cases, values of the manipulated variable that are
required to achieve perfect control performance would not be possible. In



such cases, the resulting control performance would not be perfect, and the
controlled variable would deviate from its set point.

4. Model mismatch. The model used in the predictive system will almost certainly
be different from the true process. If this difference is large, the closed-loop
system could be unstable, a situation that precludes acceptable control perfor
mance. (Recall that the final value theorem assumes stability of the system.)
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Thus, the predictive control system clearly shows that dead times, certain numerator
process dynamics (right-half-plane zeros), constraints, and model mismatches all
prevent perfect feedback control performance.

These results are not new; they were discussed in Part III and summarized in
Table 13.3. However, this development reinforces the importance of the process
in determining the achievable feedback control performance. It also provides a
unified approach to developing these conclusions.

EXAMPLE 19.1.
Feedback control was introduced using the classical (PID) structure. Determine
the relationship between the controllers in the classical structure Gds) and the
predictive system Gcpis).
Solution. Block diagram algebra can be applied to reduce the predictive con
troller and model into one transfer function, which gives

MVis)
SP(.y) - CVis)

= Gds) = Gcds)
\-Gds)Gcpis) (19.10)

Therefore, there is an equivalence between the classical and predictive structures,
and a control system can be represented by either block diagram, as long as the
proper controller transfer function is used. It is important to note that the conversion
of a predictive system into a classical system does not necessarily result in a PID
controller in the classical system; thus, the behavior of the two closed-loop systems
could, and in general would, differ. In this chapter, the predictive controllers will
be represented by the block diagram in Figure 19.2 to show the use of an explicit
model in the control system clearly; also, there are advantages in performing the
calculations in this manner, as will become clear in later sections.

EXAMPLE 19.2.
When the predictive model is perfect [i.e., Gds) = Gpis)], what else is required
for the closed-loop system to be stable?

Solution. We would like both the controlled and manipulated variables to be
stable (referred to as internal stability by Morari and Zafiriou, 1989), which requires
that the following transfer functions be stable:

C V ( 5 ) = G c d s ) G p i s ) ( 1 9 . 1 1 )
SP(5)

CVjs)
Dis)

= Gds) (19.12)
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MVjs)
SPis)

= G„is) (19.13)

Thus, the product of the controller and the process, the disturbance, and the
controller itself must be stable for the entire control system to behave in a stable
manner. Clearly, the manipulated variable would be stable only if the controller is
stable. [Recall that the controller could be unstable, while the product Gepis)Gpis)
is stable.] Also, the final value theorem in equations (19.3) and (19.4) involves
the terms Gpi0) and Gcp(0), the transfer functions evaluated at s = 0, which were
taken to be constant values. This result is valid only when the transfer functions
are stable; if they are unstable, the final value theorem is not applicable.

So far, the predictive concept has been introduced, the block diagram structure
presented, and the closed-loop transfer function derived. The starting points for
the predictive control algorithm design are the requirement for zero steady-state
offset in equation (19.5) and the definition of the perfect controller in equation
(19.6). Since the perfect controller is not possible even if it were desirable, a
manner for deriving an approximate inverse of the model is required, with an
approximate inverse being a Gcp is) that does not exactly satisfy equation (19.6) but
contains the important features for control performance. Many methods exist for
developing an approximate inverse, and each would result in a different controller
algorithm giving different control performance. In the next sections, two methods
for designing single-loop predictive control algorithms are presented. They have
been selected because they involve straightforward mathematics, are simple to
implement in a digital computer, yield good control performance in many cases,
and have been applied industrially.

19.3 m THE IMC CONTROLLER
The system in Figure 19.2 has been described by several investigators, who have
used different terminology for what is now generally referred to as the predictive
structure. The publications by Brosilow (1979) and Garcia and Morari (1982),
in which they introduced the terms inferential control and internal model control,
respectively, sparked considerable interest in the chemical engineering community.
The controller design approach presented in this section follows the developments
of these publications, which is generally referred to as the IMC method.

Since an exact inverse is not possible, the IMC approach segregates and elimi
nates the aspects of the model transfer function that make calculation of a realizable
inverse impossible. The first step is to separate the model into the product of the
two factors

Gmis) = G+(j)G-(s) (19.14)
where Gj(s) = the noninvertible part has an inverse that is not causal or is

unstable. The inverse of this term includes predictions ie9s)
and unstable poles (1/(1 + rs), with r < 0) appearing in
Gcpis). The steady-state gain of this term must be 1.0.

G~is) — the invertible part has an inverse that is causal and stable,
leading to a realizable, stable controller. The steady-state gain
of this term is the gain of the process model Km.



The IMC controller eliminates all elements in the process model Gm is) mat lead to
an unrealizable controller by taking the inverse of only the invertible factor to give

G c p i s ) = [ G - i s ) ] - 1 ( 1 9 . 1 5 )
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This design equation ensures that the controller is realizable and that the system is
internally stable (at least with a perfect model), but it does not explicitly guarantee
that the behavior of the control system is acceptable. However, the performance of
such controllers, as modified shortly, will be seen to be acceptable in many cases.
Before we proceed, this procedure is applied to two examples.

EXAMPLE 19.3.
Apply the IMC procedure to design a controller for the three-tank mixing process.
Solution. The IMC controller design requires a transfer function model of the
process. The linearized third-order model derived in Example 7.2 will be used. In
this case,

K m 0 . 0 3 9Gds) = its + l)3 i5s + l)3
Thus, the model can be inverted directly to give

irms +1)3

= G»is) G+(j) = 1.0

- lGcPis) = [G;(*)]- = K„
j5s + \?

0.039
This controller in the predictive structure in Figure 9.2 could theoretically provide
good control of the controlled variable. However, there are several drawbacks with
this design. First, the controller involves first, second, and third derivatives of the
feedback signal. These derivatives cannot be calculated exactly, although they
can be estimated numerically. Second, the appearance of high-order derivatives
of a noisy signal could lead to unacceptably high variation and large overshoot
in the manipulated variable. Finally, these high derivatives could lead to extreme
sensitivity to model errors. Therefore, this controller would not be used without
modification.

mmm
EXAMPLE 19.4.
Design an IMC controller for the process in Example 19.3, using the alternative
first-order-with-dead-time approximate model for the process that was determined
using the process reaction curve in Example 6.4 and as repeated here.

_ Kme-9mS _ 0.039g-5-5'm(,s) " rms + 1 ~ 10.55 -I-1

This model must be factored into invertible and noninvertible parts:

r-m = K~ = °039mW zms + \ 10.5* +1

G+is) = e~6mS = e~5-5s
The invertible part is then employed in deriving the controller:

Gcds) = [G~is)} - i

zms + 1 10.5s -I-1
Kn 0.039

lA0

"db* lAI
1

f r - r̂ lA2m
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This controller is a proportional-derivative algorithm, which still might be too ag
gressive but will be modified to give acceptable performance in Example 19.6.

I

As discussed in Section 4.3, all realistic processes are modelled by transfer
functions having a denominator order greater than the numerator order. Thus, the
controller according to equation (19.15), which is the inverse of the process model,
will have a numerator order greater than the denominator order. This results in first-
or higher-order derivatives in the controller, which generally lead to unacceptable
manipulated-variable behavior and, thus, poor performance and poor robustness
when model errors occur.

Achieving good control performance requires modifications that modulate
the manipulated-variable behavior and increase the robustness of the system. The
IMC design method provides one feature to account for both of these concerns:
filtering the feedback signal. The filter can be placed before the controller, as
shown in Figure 19.3, so that the closed-loop transfer functions for the controlled
and manipulated variables become

CVjs)
SPis)

MVJS)
SPis)

CVjs)
Dis)

MVis)

G/is)Gepis)Gpis)
\+Gfis)Gcpis)[Gpis)-Gmis)]

Gfis)Gcpjs)
\ + Gfis)Gcpis)[Gpis) - G,ds)}

Gds)[\-Gfis)Gcpis)Gmjs)]
1 + Gfis)Gcpis)[Gpis) - Gmis)]

-Gds)Gcpjs)Gfjs)
Dis) 1 + Gfis)Gcpis)[Gpis) - Gmis)]

(19.16)

(19.17)

(19.18)

(19.19)

Now, four desirable properties of the filter are determined as a basis for se
lecting the filter algorithm. First, the steady-state value of the filter needs to be

Dis)

SPis) +TJs)K j "
- n Gfis) G^s)'cp

MVis)

FIGURE 19.3

Predictive structure with single filter.

Gds)

GDis)

Gmis)

F-mis)

+ i eve*)

o



determined. Application of the final value theorem to the closed-loop transfer
function in equation (19.16) with the requirement of zero steady-state offset yields

lim CV(0/-▶oo
r ASP 1= l i m s { -
s^Q s I 1

GfiO)GcpiO)GpiO)

= ASP
+ G/(0)Gcp(0)[Gp(0)-Gm(0)]

onlyifGcp(0) = [G/(0)Gw(0)]-1
(19.20)

By convention, the controller gain is required to be the inverse of the process
model; therefore, the steady-state gain of the filter must be unity; that is, G/(0) =
Kf= 1.0.

Second, a desired effect of the filter on the manipulated-variable behavior must
be decided. Generally, the filter should reduce unnecessary high-frequency fluc
tuations due to noise. Since Gfis) appears in the numerator of equations (19.17)
and (19.19), the magnitude of the filter magnitude should decrease with increasing
frequency. The filter with the proper amplitude ratio attenuates the effects of high-
frequency variation in the controlled variable (and set point) on the variation in the
manipulated variable while it transmits the lower-frequency variation essentially
unchanged. The term introduced in Chapter 12 for this behavior was low-pass
filter.

Third, the filter influences the controlled-variable performance. Its appear
ance in the numerators of equations (19.16) and (19.18) indicates that filters with
monotonically decreasing amplitude with increasing frequency degrade the per
formance of the controlled variable: filters lead to larger deviations from set point
during transients. Thus, too much damping through the filter is not desirable.

Fourth, the effect of the filter on stability can be interpreted by analyzing the
closed-loop transfer function, which has Gods) = Gfis)Gcpis)[Gpis) — Gmis)]
for the predictive system. Clearly, the system is always stable if the model is perfect
(and the controller is stable). However, the model is essentially never perfect, and
the filter is required to ensure stability for a reasonable range of model error.
Recalling that stability is improved as the magnitude of GodJ<*>c) is decreased, a
filter that has decreasing magnitude as frequency increases will reduce the effects
of model mismatch on \GodJoJc)\ and stabilize the closed-loop system.

In summary, filters with a steady-state gain of 1.0 and decreasing magnitudes
as frequencies increase satisfy the general requirements of increased robustness and
noise attenuation. Many potential filter transfer functions satisfy the requirements
just developed.
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In the single-loop IMC design, it is conventional to use the following filter equation
to improve robustness and manipulated-variable behavior.

Gfis) 4—1"Lr/s + iJ (19.21)

In this equation, the exponent N is selected to be large enough that the product
Gfis)Gcpis) has a denominator polynomial in s of order at least as high as its
numerator polynomial. For further examples in this chapter, the model Gmis) will
be first-order with dead time and the filter will be a first-order system (A/ = 1),
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but this is not always the case for other process models. The filter time constant
can be adjusted to satisfy the performance specifications. Increasing the filter time
constant modulates the manipulated-variable fluctuations and increases robustness
at the expense of larger deviations of the controlled variable from its set point during
the transient response.

EXAMPLE 19.5.
The filter location in Figure 19.3 influences the behavior of the control system for
both disturbance and set point responses. Develop an alternative structure to
separate these effects, so that the disturbance and set point responses can be
influenced independently.

To achieve robustness, one filter must be located within the feedback loop. A
design is shown in Figure 19.4, which has one filter, GfFis), in the feedback path
and a second filter, GfSis), for set point. The advantage of this design is the ability
to modify the set point and disturbance responses independently. This design is
sometimes referred to as a two-degree-of-freedom controller.

The predictive control system is difficult to implement in analog computing
equipment because of the dead time in the model G,„is), but it is straightfor
ward with digital computers, regardless of the model structure. The simple models
considered in this chapter can be expressed in discrete form by methods already
introduced in Chapters 6 and 15 and in Appendix F. The IMC system in Figure
19.3 with a single filter will be considered, and the dynamic model will be assumed
to be first-order with dead time. Thus, the predictive control system equations in
continuous form are

—0msCVmis) _ „ ,,_Kme
MVis) ~ Um{s) ~ UTT (19.22)

G~is) =
Kn

TmS + l (19.23)

SP(J)
Gffr)

+
_ a

Us)

Dis)

Gcpis)

Gds)

MVis)

Gpis)
+ icv(*)

Gds)

GfFis)
Emis)

FIGURE 19.4

Two-degree-of-freedom predictive controller.

v +
0



MV(j )
Tpis)

= Gfis)Gcpis) = 1 TmS + \
Km xfs + 1 (19.24)

with CVmis) the predicted value of the controlled variable, that is, the output
from the model Gmis). The dynamic model can be simulated in discrete form, as
explained in Appendix F.

(CVOT)„ = [e-At^]iCVm)n-x + Km[\ - r^]MVfl_r_, (19.25)
with At the digital controller execution period and the dead time modelled as
r = 9m/At, an integer value.

Note that the product of Gfis)Gcpis) can be implemented as one algorithm
in this case: a lead-lag transfer function, which was expressed in discrete form in
Section 15.5.

MV„ =
1L
At

- A t
MV„_, +

tin
~At + 1

- A t
+ 1 <Jp)n ~ ^-

At
^ + 1

LAr
iTp),,-)

(19.26)
with Tp the target—that is, the set point as corrected by the feedback signal; the
difference between the measured and predicted values of the controlled variable.

In summary, the predictive control system execution at step n involves the
following:
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1. Calculate the predicted controlled variable, equation (19.25).
2. Calculate the difference between the measured and model-predicted controlled

variables, (£m)„ = CVn - (CVm)„.
3. Correct the set point with the feedback signal, iTp)„ = SP,, - (2?m )„.
4. Calculate the manipulated-variable value, equation (19.26).

EXAMPLE 19.6.
Simulate the dynamic response of the linearized three-tank mixing process in Ex
ample 19.4, operating at the base-case inlet flow rate, under IMC feedback control.

The true process Gpis) is taken as the linear, third-order system, and the
controller and dynamic model Gds) will be based on the approximate first-order-
with-dead-time model. This structural mismatch, which is typical of realistic appli
cations, precludes perfect control; thus, the results of this exercise give a realistic
evaluation of the performance of IMC controllers.

The controller with filter and model transfer functions are

GPis) =
0.039 Gds) = 0.039e-5.55

GfisWcpis) =
1 10.5* + 1

(55 +1)3 — 10.5*+ 1 '* ' H- ' 0.039 T/5 + 1
The controller calculations can be converted to discrete form with At - 0.10 to
give

(CVm)„ = [C-01/,05](CVm)„_1 +0.039[1 -e-01/10-5]MVfl_55_,
= 0.9905(CVm)„_, +0.000388 MV„_56

MV„ =
1L
0.1

£ ♦ >
MV„_, +

rio.5
"5T

0.039
+ 1

0.1 +1
iTp)„ 0.039

r 1Q.5
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In this example, the closed-loop simulation is performed using the foregoing
equations for the controller (based on an approximate model) and the linearized
third-order model for the plant; thus, significant model mismatch exists between
the process and the model. The results are given in Figure 19.5a for a feed com
position disturbance of magnitude of 0.80%A and in Figure 19.5b for a set point
change, each for three values of the filter time constant. As the filter time constant
increases, the aggressiveness of the controller decreases, as indicated by the
slower response of the manipulated variable and slower return to the set point.
It is noteworthy that the disturbance response appears acceptable, albeit slow,
for all values of the filter tuning, while the set point response experiences extreme
manipulated-variable variability for the lowest filter value. This comparison demon
strates the disadvantage for a single filter and the potential for improvement by
using separate filters, as shown in Figure 19.4, to influence the disturbance and
set point responses separately.

*A0

t̂ r <A1

1

?" hzfcf"
lA2

1
*A3

0

Based on the results in Example 19.6 and our previous experience with the PID
controller, we would expect that the performance of predictive control depends on a
proper choice of all parameters in the system. In general, all parameters appearing
in the IMC model and the control algorithm could be tuned, but it is common
practice to use the best estimates for the dynamic model. Thus, only the filter time
constant, if, is considered available for tuning.

The considerations for controller tuning were thoroughly discussed in Chapter
9. Clearly, no one value or correlation will suit all situations, but a few studies
have been performed to provide initial tuning values, which are applicable to
many situations and can be fine-tuned based on empirical experience. One tuning
guideline, due to Brosilow (1979), suggests that the filter time constant be related
to the likely model error, t/ = 0.25(60), with 80 the maximum likely error in
the estimated dead time; Morari and Zafiriou (1989) recommend that a thorough
robust tuning analysis be performed.

The method for tuning discussed in Chapter 9 and summarized in Appendix
E for PID controllers, which minimized the IAE of the noisy controlled variable
subject to limitations on variations in the manipulated variable over a range of
model mismatch, has been applied to the IMC design as well (Ciancone et al.,
1993). The results for a first-order-with-dead-time process model are given in
Figure 19.6 for good performance for a step disturbance. The filter tuning constant
has a large value for small fraction dead times, although one might initially expect
the opposite correlation because systems that are easier to control require more
filtering. The reason for these results is the need to moderate the high-frequency
variation in the manipulated variable. Thus, the ratio of process time constant to
filter time constant in the lead-lag element in the controller should not be too
large; these results indicate that a reasonable ratio is around 2. A smaller filter
time constant would be allowable for stability and give good controlled-variable
performance, but the variability in the manipulated variable would be unacceptabJy
large for many applications.

EXAMPLE 19.7.
Calculate the filter tuning constant for the IMC controller applied to the three-tank
mixing process.
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(a) Disturbance responses and ib) set point responses for Example 19.6. The
values of the filter time constant rf are 10 min (case A), 6.1 min (case B), and

2.0 min (case C).
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0.20
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Fraction dead time, —_0 + T
FIGURE 19.6

Tuning correlation for single-loop IMC disturbance response
on a first-order-with-dead-time process.

Applying the correlations noted for Brosilow's approach, and assuming that
the likely dead time error is 35%, gives

xf = (0.35)(5.5)(.25) = 0.48 min
The Ciancone correlation in Figure 19.6 gives

0/(0 + r) = 5.5/(5.5 + 10.5) = 0.34
r//(0 + T) = 0.38

r/ = (0.38)(16) = 6.1 min
The dynamic response using tuning values based on Figure 19.6 is case B in

Figure 19.5a and b. The controlled-variable IAE for the IMC disturbance response
is 9.1, which is slightly larger than the value obtained under PID control for the
same disturbance in Example 9.2.
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% " i±r lA2
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EXAMPLE 19.8.
Evaluate the robustness for the IMC controllers implemented in Example 19.7.

Assuming that the system closely approximates a continuous system, the
analysis could be performed using methods introduced in Chapter 10. However,
root locus is not applicable, because the characteristic equation involves expo
nentials in *. Also, the Bode method is not generally applicable because the Bode
plots for predictive systems do not always conform to the requirements noted in
Table 10.1 (i.e., monotonically decreasing amplitude and phase behavior after the
critical frequency). The stability could be determined using the Nyquist method
applied to G0ds) = G/(*)Gcp(*)[(Gp(*) - Gds)]; however, this method has not
been stressed in this book.

Therefore, the robustness of this example will be evaluated by simulating
cases with a fixed value of the filter time constant and different operating condi
tions. The range of process operations for the three-tank process is the same as



considered in Section 16.2, where the flow rate has its base-case value in case E;
is decreased by about 30% in case C; and is decreased by about 55% in case A.
The parameters for the process model of the true process are given below.
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Case Kp
FB (%A/% open)

T/(min)
(i = 1,3 for third-order system)

A 3 . 0 0 . 0 8 7
C 5 . 0 0 . 0 5 2
E (basis for tuning) 6.9 0.039

11.4
6.9
5.0

In this example, the controller parameters are fixed at values appropriate for the
base-case approximate first-order-with-dead-time empirical model, as determined
in Example 19.6; thus, the model gain was 0.039, the model time constant was
10.5, and the model dead time was 5.5. The filter time constant was determined
to be 6.1 min in Example 19.7.

The results are presented in Figure 19.7. The performance is acceptable for
the base case and +30% change in process behavior. For the largest model
error, the system has very poor performance and appears on the limit of stability.
These results are similar to the behavior of PID controllers; for reasonable model
errors (previously estimated to be around ±25%), the PID performance usually

co

'1c
co
U

2.5

| * V J 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

20 40 60 80 100
Time

1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

200

FIGURE 19.7

Dynamic response of three-tank system with IMC control at various
operating conditions for Example 19.8 (t> = 6.1 min).
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does not degrade significantly. However, as the errors become large, the PID
performance degrades substantially and can become unstable. As we see, some
characteristics of closed-loop feedback systems do not depend strongly on the
control calculation.

In conclusion, the IMC controller is based on the general predictive control
structure. The controller design method adheres to criteria that ensure zero offset for
steplike disturbances, and it employs a factorization approach to obtain a realizable
approximate inverse that gives good feedback control performance. An adjustable
filter (tuning parameter) was introduced to enable the engineer to moderate the
feedback action to maintain good performance of the controller and manipulated
variables in the presence of measurement noise and model error.

19.4 a THE SMITH PREDICTOR

The control design by O. Smith (1957) preceded much of the general analysis
of predictive systems; in fact, it predated the application of digital computers to
process control, so that widespread implementation of Smith's results was delayed
until real-time digital control computers became commercially available. Smith's
approach, shown in Figure 19.8, relies on the general predictive structure in which
the controller is calculated by the elements in the dashed box; these elements
perform the function of the predictive control algorithm, Gcp(5), in Figure 19.2.

Smith reasoned that "eliminating the dead time" from the control loop would
be beneficial, which is certainly true but not possible via a feedback controller;
only physical changes in the process can affect the feedback dead time. Therefore,
Smith suggested that controlling a model of the process, without the dead time (or
other noninvertible element), would provide a better calculation of the manipu-

SPis)

Emis)
FIGURE 19.8
Block diagram of Smith predictor. Gc is a proportional-integral controller.



lated variable to be implemented in the true process. He retained the conventional
PI control algorithm; thus, the system in Figure 19.8 consists of a feedback PI
algorithm Gds) that controls a simulated process, G~is), which is easier to con
trol than the real process. G~is) has the same meaning here as for IMC control
in equation (19.14), and the absence of dead time or inverse response (right-half-
plane zero) in the model G~(s) allows much more aggressive control of the model
than of the true plant.

The calculated manipulated variable resulting from controlling the model is
implemented in the true process, which could yield good control as long as the
model were perfect. Naturally, the model will not be perfect, and some form of
feedback is required to achieve zero steady-state offset. Smith recognized the
value of the predictive structure and, as shown in Figure 19.8, proposed correcting
the model with the difference between the measured and the predicted controlled
variables. Note that the prediction is determined using the complete linear dynamic
model Gmis), including any noninvertible dynamics. The feedback signal E„,is)
can be interpreted as a correction to the model G~fs).

The closed-loop transfer function of the system in Figure 19.8 is

C V ( £ ) = G d s ) G p j s )
SPis) \+GcG^is) + Gds)[Gpis)-G,ds)]

If the model were perfect, the characteristic equation would not contain a dead time,
because Gmis) and Gpis) would cancel. Thus, for the case with a perfect model,
the characteristic equation involves only the expression 1 + Gcis)G~is), which
is easier to control and allows a more aggressive adjustment of the manipulated
variable. Naturally, the true process is never known exactly, and the actual behavior
and stability depend on all terms without cancellation. Application of the final value
theorem to equation (19.27), for a step change in the set point and a PI algorithm
for the controller, gives

A S P G d s ) G p i s )
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lim CV(0 = lim.s
t - K X > S - * 0 s 1 + GcG~is) + Gds)[Gpis) - Gmis)]

For a stable process, Gp(0) = Kp and GOT(0) = Km = G~(0) = K~,

(19.28)

lim CV(0 = lim ASP/ -▶o o s - * 0

= ASP
M1*̂ )*-"̂ 1*̂ )̂ '-*"*i +

The Smith Predictor

(19.29)

Thus, zero steady-state offset for a step input with Smith predictor control does not
require a perfect model; it requires only that the steady-state gains for the two models
be identical iKm = K~) and that the controller algorithm Gcis) have an integral
mode.

Again, the performance and robustness of the Smith predictor control system de
pend on the controller tuning. The reader is cautioned that the PI controller in the
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Smith predictor should not be tuned using correlations from Part IH, which were
developed for the conventional control structure, using G~(s) for the feedback
dynamics. The purpose of the PI controller is to calculate an approximate inverse
rapidly, as demonstrated by the following:

M V i s ) G d s ) ^ 1
Gcp SPis)-Emis) \ + Gds)G„is) G^is) for "large" Gds)

(19.30)
Thus, the inverse would be approximated by a tightly tuned controller. A proper
tuning procedure should consider the behavior of the controlled and manipulated
variables as well as robustness for the model mismatch expected to be encountered.
The proper tuning can be related to the IMC tuning by recognizing the equivalence
of the IMC and Smith predictor for application to a process with first-order-with-
dead-time feedback dynamics:

Gds)Smith predictor: MVQy)
Tpis) l + G7ds)Gds)

* ( ■ ♦ * )
(19.31)

1 +

IMC controller: 1 TmS + 1

Kn
+ rms

MVjs)
Tpis) ~ Km xfs + 1

These two expressions can be shown to be equal when

Ke =
TfKn

Ti = t„

(19.32)

(19.33)

Thus, the tuning correlations in Figure 19.6 along with equations (19.33) can be
used to estimate initial tuning for the Smith predictor with a first-order-with-dead-
time process model. Alternative guidelines are provided by Laughlin and Morari
(1987).

The Smith predictor is easily programmed in a digital system. The digital form
of the PI controller was presented in Chapter 11, and for a first-order-with-dead-
time model, the digital models are programmed using equation (19.25) for Gmis)
and the same equation with no dead time, T = 0, for G~is).
EXAMPLE 19.9.
Apply the Smith predictor to the same process as considered in Example 19.7,
the three-tank mixing process.

Again, the approximate first-order-with-dead-time model will be used as given
in Example 19.7. The PI tuning can be estimated using Figure 19.6 and equations
(19.33) to give

0/(0 + r) = 0.34 t//(0 + r) = 0.38 xf = 6.1 min

Kc = T/ixfKm) = 10.5/[(6.1)(.039)] = 44.1(% open)/(%A) Tt = x = 10.5 min

The models Gmis) and G~is) can be converted to digital approximations, as
demonstrated in Example 19.8, and the PI controller can be programmed digitally,
as shown in Chapter 11. The dynamic response of the control system, with the con
troller implemented as a digital algorithm, is essentially identical to the response
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FIGURE 19.9

Dynamic response for three-tank system under Smith predictor
control for Example 19.9 with Kc = 88% open/% A.

for the IMC controller shown in Figure 19.5, case B, so that plot is not repeated. The
controller can be fine-tuned using the same approach as described in Section 9.5.
For example, the controlled-variable performance for the base-case model can be
improved by increasing the controller gain to 88% open/%A, as shown in Figure
19.9, which gives an IAE of 6.8. Since this tuning is more aggressive than the cor
relations in Figure 19.6, it is less robust and would not normally be used initially,
but it could be reached through fine tuning if empirical experience indicated that
the actual model errors and noise were smaller than anticipated in deriving the
initial tuning correlation.

In conclusion, the Smith predictor conforms to the general principles of the
predictive control structure. It employs a unique method for calculating an ap
proximate model inverse: by controlling a model consisting of the invertible part
of the model. This structure can achieve zero steady-state offset for steplike dis
turbances by conforming to easily achieved criteria. Again, the Smith predictor
system is simple to implement in digital control and generally yields good control
performance. The tuning of the PI controller must be appropriate for the predictive
structure and can be adjusted to make the Smith predictor control more or less ag
gressive to provide the desired controlled- and manipulated-variable performance
for the expected range of model mismatch.
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It is important to remember that predictive controllers employ the same feedback
principles as classical structures and involve basically the same tasks to design,
implement, and operate. The engineering tasks include selecting the feedback mea
surement, selecting the manipulated variable, determining an appropriate model
structure with parameters, selecting an algorithm, and establishing the tuning con
stants. In operating the system, process personnel must decide on the status of
the controller—automatic or manual—and enter the set point value. Thus, predic
tive controllers can be presented to plant operating personnel in exactly the same
manner as classical PID controllers, so that displays and faceplates need not be
altered.

One programming detail is important for proper implementation: the variable
used as the input to the model G,ds). This variable should have the value of the
actual process input variable and must observe any limitations that exist in the
plant, such as the valve being limited to 0 to 100% open. If this guideline is not
observed, the control system will be subject to the undesirable integral (reset)
windup, described in Chapter 12. When a limitation is reached in the manipulated
variable, the controlled variable cannot be returned to its set point, regardless of
the control algorithm used. In this situation, the magnitude of the controller output
must not increase without limit (the symptom of integral windup). The behavior
of the controller output can be determined by applying the final value theorem
to the Laplace transform of the controller output, MVis), for the IMC control
system in Figure 19.10. This is done in the following paragraphs for incorrect and
correct implementations for a step disturbance; in both, MV(s) is the output of the
controller.

Incorrect (windup occurs): The IMC model input is the signal before any
limitation, MVis), which can differ from the true value of the input variable to
the process, MV*(.s). The closed-loop transfer function for this system, when the

Dis)

Tpis)
SPis)

Gfis) GJs)'cp

MVis)
Incorrect

±

Gds)

Gpis)

MV*(s)
Correct

GJs)

+1 CV( * )

+ 0

Emis)
FIGURE 19.10

Predictive control structure with correct (solid) and incorrect (dashed)
inputs to the model.
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Clearly, this implementation suffers from integral windup. This undesirable be
havior results because of the requirements that Kf = 1.0 and Kcp = K~l for
zero steady-state offset in the normal, unconstrained situation. The cause of reset
windup could also be interpreted as the model Gm is) ceasing to represent the causal
relationship between the calculated controller output and the measured controlled
variable, which is properly zero when the limitation occurs.

Correct (windup prevented): The IMC model input is the true value of the
variable in the process, MV*(.y), which is affected by the process limitations. When
the manipulated variable reaches a limit, it is constant, and the system behaves like
an open-loop system.

limMV(0 = limsMV(.s)/ -▶o o s ^ - 0

= Jims I -Gfis)Gcpis)Gds)— 1 (19.35)

This approach achieves the proper behavior because the model Gm is) represents a
causal relationship that is valid for all situations. When the values of the predicted
and the measured controlled variables reach essentially constant values, the feed
back signal is constant except for disturbances, which vary over a limited range
of values. The feedback signal in the correct implementation results in a value of
the controller output that is limited to proportional responses to disturbances, as
is proper to prevent integral windup.

With proper design and care for implementation details, digital implemen
tation of predictive controllers is straightforward; in fact, the algorithms can be
preprogrammed so that engineers need only select from a set of possible model
structures and enter values for the model parameters and tuning constants. Thus, a
predictive controller should not require more effort to implement than a standard
PID algorithm.

1 9 . 6 □ A L G O R I T H M S E L E C T I O N G U I D E L I N E S

To this point, single-loop predictive control has been introduced, the IMC and
Smith predictor control algorithms have been presented, and tuning and program
ming guidelines have been provided. These controllers can be used in place of
any PID controller; however, since the PID is the standard algorithm selected, a
predictive control system is normally selected only when it performs better than a
PID algorithm. In this section four applications are discussed in which predictive
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control offers potential advantages; the IMC controller will be used in all examples,
but similar results can be obtained with a Smith predictor.

Long Dead Times
The Smith predictor is often referred to as a dead time compensator because
Smith's original goal was to improve the performance of feedback control systems
with long dead times in the feedback processes. When the model is perfect in
Figure 19.3, the predictive system behaves like a feedforward controller; thus, the
control action in this ideal situation can be as aggressive as required for the desired
performance, without concern for stability. Even with modest model errors, the
predictive system has the potential for improved performance when applied to
processes with large fraction dead times. Selection of the proper algorithm (PID or
predictive) depends on the particular situation; the advantages of predictive control
are greater as the model is more accurate, the noise is small, and the feedback
fraction dead time is large, usually greater than about 0.70.

Inverse Response
As explained in Section 13.5, an inverse response in the feedback process degrades
the performance of a feedback controller in a manner similar to dead time. The PID
algorithm has particular difficulty, because its error signal—the difference between
the set point and the measured variable—initially increases in magnitude in spite
of a proper initial feedback adjustment to the manipulated variable. The predictive
controller has been reported to perform well, because its feedback signal—the
difference between the predicted and the measured values—does not experience
an inverse response (Iionya and Altpeter, 1962; Shunta, 1984).

Cascade Control
One of the design criteria presented in Chapter 14 for cascade control is that
the secondary control loop must be much faster than the primary loop. There
are situations in which a cascade is desirable for disturbance response, but the
dynamic response of the secondary is not substantially faster than the primary. An
example is a distillation composition controller that acts as a primary by resetting
a tray temperature controller set point (e.g., Fuentes and Luyben, 1983). If the
appropriate cascade criterion is not satisfied, significant fluctuation of the relatively
slow secondary controlled variable causes a transient disturbance in the primary. If
a PID control algorithm is used as the primary controller, unacceptable oscillations
can occur.

A predictive control system for the primary in a cascade offers a distinct
advantage, because the feedback signal is the sum of the model error in the primary,
along with primary disturbances (Bartman, 1981). Secondary disturbances, which
cause deviations in the secondary measurement, appear in both the measured and
predicted primary variable at about the same time and magnitude (if the modei
is reasonably accurate). As a result, the secondary disturbances have little or no
effect on the feedback signal, Emis). This behavior is achieved when the model
input is the measured secondary variable, as shown in Figure 19.11. Therefore, the
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FIGURE 19.11

Cascade control with a primary predictive controller.

dynamic behavior of some cascade systems can potentially be better (i.e., much
less oscillatory) when the primary is a predictive control system.
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Feedforward
As described in Chapter 15, a feedforward-feedback control system can perform
quite well when the process dynamics allow a complete compensation of the dis
turbance by the feedforward controller. This criterion is satisfied when the distur
bance dead time is longer than the feedback process dead time (i.e., 9j > 6P).
When this criterion is not satisfied, the feedforward controller changes the manip
ulated variable enough to compensate fully for the disturbance when the steady
state is achieved; however, the initial effect of the disturbance appears in the mea
sured controlled variable prior to the effect of the manipulated variable. A PID
feedback controller cannot recognize that the feedforward compensation has been
introduced and makes an unnecessary additional change to the manipulated vari
able.

The essential deficiency in the conventional feedforward-feedback design is
the feedback PID controller, which cannot determine that the proper manipulation
has been entered by the feedforward controller. This deficiency can be overcome
through the use of a predictive control system for feedback, as shown in Figure
19.12. In this design, the predictive model includes relationships for the manipu
lated and measured disturbance variables, and the value of the manipulated vari
able used in the model includes the changes from both feedforward and feedback
controllers. Again, the feedback signal is the difference between the measured
and predicted controlled variables. As long as the models GdmCs) and Gmis) are
reasonably accurate, the feedback signal, Em is), does not change during the tran
sient resulting from imperfect feedforward dynamics. In the situation of "slow"
feedforward control (0</ < 6P), the model predictive feedback will not introduce
additional adjustments to the manipulated variable.
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FIGURE 19.12

Feedforward with predictive feedback control.

The guidelines in this section indicate applications in which predictive control
is likely to perform better than single-loop PID controllers. In many other appli
cations, PID and predictive control systems give equivalent performance, and the
usual selection is PID.

19.7 ® ADDITIONAL TOPICS IN SINGLE-LOOP MODEL
PREDICTIVE CONTROL
The presentation in this chapter provides only an overview of predictive control,
which is still a developing topic. A few important additional issues are introduced
briefly in this section with reference to the IMC control system.

Digital Implementation
The procedure used here was to perform the design assuming that all variables were
continuous, allowing Laplace transform methods, and subsequently, to convert the
resulting model and controller to discrete form. A more general approach is to
convert the models to the discrete form before performing the controller design,
which enables more general model structures to be used. This approach requires
the use of z-transforms (Appendix L; Ogata, 1987) and is presented in Appendix L
and in Morari and Zafiriou (1989).

Controller Design
The method for calculating the controller was based on the goal of perfect control
(zero deviation of the controlled variable from its set point). Since this goal is not
possible, the controller design method factored the model and used only the in
vertible part, Gcpis) = [G~is)]~l. This approach leads to a realizable controller,
but there is no guarantee that it is the "best" in any sense. Alternative controller



algorithm design methods are based on other goals. For example, the controller 609
could be designed to minimize the integral of the error squared, ISE, of the con- u^\-H^Mfa^^^k'^\
trolled variable during the disturbance response. This approach is presented by Conclusions
Newton et al. (1957) and applied to IMC control by Morari and Zafiriou (1989).
Naturally, a tunable filter remains in the design to achieve the desired robustness
and manipulated-variable behavior.

Filter Design
The filter described in this chapter improves the robustness of the predictive system
at the expense of increased deviation of the controlled variable from its set point.
Alternative filter designs can be selected to improve the response of the system
to a specific disturbance. For example, the response of predictive systems to dis
turbances, as described in this chapter, can be somewhat slow, but the disturbance
response can be improved by designing a filter that infers the disturbance variable
Dis) from the feedback signal Emis). When there is no model error, this calcu
lation requires that the filter be related to the inverse of the disturbance transfer
function. While this concept is theoretically sound, it can lead to aggressive con
trollers that are tailored to a specific disturbance and may not respond well to other
disturbance types. Again, some of these ideas are in Morari and Zafiriou (1989).

Robustness and Tuning
A vast literature is developing in methods for designing controllers using knowl
edge of the likely model errors, or mismatch. The key aspect of the design methods
is to provide not only stability, but also the best performance possible, over the
likely model errors. If the mismatch characterization is simple, like the gain margin
used in Ziegler-Nichols, the methods are easily applied, but they can yield con
servative feedback performance. This approach was promoted by the discussions
and methods in Doyle and Stein (1981).

PID Tuning
The IMC controller can be expressed as an equivalent classical controller design,
and this equivalence can be used to express PID tuning as a function of only one
parameter: the IMC filter t/. Results have been developed by Rivera et al. (1986)
and are summarized here for the "improved PI" tuning:

2 r + 0 „ , 6
T, = r + -

2 r f 2
The recommendation is that Xf > max (1.70,0.2r) (Morari and Zafiriou, 1989).

K P K C = - ^ — T , = r + - ( 1 9 . 3 6 )

19.8 0 CONCLUSIONS
In this chapter, an alternative feedback control structure and algorithm were intro
duced for processes that are open-loop stable. This predictive structure employs an
explicit model of the process in the control calculations. In addition, the controller
Gcpis) is designed to be an approximation of the process model inverse. Since the
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feedback signal is the disturbance [when Gm is) is a perfect model], the predictive
controller functions somewhat like a feedforward controller and potentially can
implement more aggressive adjustments to the manipulated variables.

Analysis of the predictive control structure provides a unified viewpoint for
evaluating the effects of dynamic elements in the feedback process on control
performance. In particular, the importance of dead time, inverse response (right-
half-plane zeros), constraints, and model error are clearly identified.

Recall that the controller cannot eliminate dead time or inverse response from the
feedback process. Substantial improvement in single-loop control performance re
quires process changes to reduce these unfavorable dynamic characteristics.

The predictive structure has the feature of removing process elements that are
difficult to control from the calculation of the feedback adjustment, when the model
is perfect. In this situation, the feedback signal Em does not depend on the controller
output MV, because it is affected only by disturbances. In single-loop control,
predictive control offers potential for improved performance in feedback processes
with large fraction dead times, inverse responses, or both. Also, predictive control
can be employed in cascade control with similar secondary and primary dynamics
and in feedforward-feedback control with a disturbance dead time less than the
feedback dead time.

In addition to providing useful single-loop control algorithms, the material in
this chapter provides a general manner for analyzing feedback systems. Specif
ically, the predictive structure is the basis for the powerful multivariable control
algorithm presented in Chapter 23.
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ADDITIONAL RESOURCES
The results in this chapter are limited to stable processes, which eliminates unstable
processes such as the chemical reactors in Appendix C and non-self-regulating
levels. The approach can be extended, as described in Morari and Zafiriou (1989).

QUESTIONS
19.1. For the following processes, design IMC and Smith predictor model pre

dictive controllers. Specify all parameters and give all equations for digital
implementation. Simulate each for a set point change.
id) The process in question 6.1, controlling temperature by adjusting the

valve.
ib) The process in question 6.2, controlling temperature by adjusting the

valve.
(c) The nonisothermal chemical reactor in Example 13.12, controlling the

reactor concentration, Ca, by manipulating (i) the pure A feed valve
(va) or (ii) the coolant flow valve (i>c).

id) The chemical reactors in Example 3.3, controlling outlet composition
Ca2 by adjusting the inlet composition Cao- Use an approximate first-
order-with-dead-time model for Gmis) and in designing Gcp(s).

19.2. The three-tank mixing process with IMC control was investigated in Exam
ple 19.8 for various flow rates. Using the deterministic-calculation approach
introduced in Section 16.3, determine a method for maintaining good IMC
control performance as the measured flow rate changes over the range in
Table 16.1.

19.3. The following process models have been identified for processes that con
form to the block diagram in Figure 19.11. For each process, determine
whether cascade control or single-loop control is appropriate, assuming
that D2is) is a significant disturbance. For cascades, decide whether the
performance might be improved by using an IMC controller as the primary.
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19.4. (a) Verify the equalities given in equations (19.31) to (19.33), re
lating the IMC and Smith predictor approximate inverses for
G-is) = Km/i\+xs).

ib) Verify the relationship in equation (19.10) relating the model predictive
and classical controllers.

ic) In Figures 19.10 to 19.12, which of the transfer functions represent
control calculations and which represent process behavior?

id) Determine the criteria for zero steady-state offset with model predictive
control of a stable process with an impulse input change.

19.5. Describe a proper method for providing anti-reset windup for the Smith
predictor. Include a block diagram and apply the final value theorem to
prove that your design is adequate.

19.6. Perform the following analysis for the stirred-tank heat exchanger in Ex
ample 8.5 under IMC feedback control. To simplify the analysis, assume a
perfect model when determining the analytical solution and that Gjis) =
Gpis).
id) Analyze the degrees of freedom.
ib) Derive the linearized model for the process and controller.
(c) Determine the analytical solution for the controlled variable for a step

set point change. Assume that Xf = t.
id) Determine the analytical solution for the manipulated variable for a

step set point change. Assume that Xf = x.
ie) Recalculate the results in (c) and id) for Xf = £t, with ft = 0.5 and

0.1. Sketch the shape of the dynamic responses of the controlled and
manipulated variables for these three values of tf.

if) Select the best value of Xf for the heat exchanger, not necessarily one
of the values considered in previous parts of this question.

19.7. The selection of the manipulated and controlled variables is discussed in
Chapter 7. Discuss how these criteria should be modified for feedback
control using model predictive control.

19.8. A mixing process with the structure in Figure 13.4 and with the following
feedback and disturbance transfer functions is to be controlled with an IMC
controller. The controlled variable is to be maintained within ±0.37 of the
set point for a unit step disturbance. What value of the IMC controller filter
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19.9. The chemical reactor process described in Examples 1.2 and 13.8 has a

feedback system with the outlet concentration controlled by adjusting the
solvent flow rate. Design IMC and Smith predictor model predictive con
trollers for feedback control. Program one of them and compare the control
performance with that achieved with PI feedback in Example 13.8. Discuss
the relative performances and steps required to substantially improve the
control performance.

19.10. Draw a block diagram for the Smith predictor control system. In each block
that involves controller calculations, show the equations solved in the digital
implementation. Assume that an adequate process model is first-order with
dead time.

19.11. The results of the tuning study given in Figure 19.6 show that the IMC
filter factor decreases as the fraction dead time increases. Since the filter
was introduced to make the feedback adjustments less aggressive and more
robust, one might expect larger filter values to be necessary at large frac
tion dead times. Discuss the effects of the filter and reconcile the tuning
correlations with the robustness expectations just stated. (Hint: Consider
all control performance criteria and process conditions involved in deter
mining the tuning correlations. They are described in Table 9.1.)

19.12. Analyze the control performance for IMC (or Smith predictor) feedback
control of the three-tank mixing process using closed-loop frequency re
sponse. The process is modelled in Example 7.2.
ia) Derive the expression used for this calculation assuming that the con

troller uses the first-order-with-dead-time approximation in Example
19.5 and Xf = 6.1. (Do not solve for the real and imaginary parts
analytically.)

ib) Use a computer program to evaluate the magnitude of the transfer func
tion over a range of frequencies; that is, determine \CVijco)\/\Dijoj) \.

ic) Compare the results in ib) with the equivalent results in Figure 13.16
(curve a) for PI control, discussing similarities and differences.

19.13. A method for analyzing the stability of the model predictive control sys
tems should be available. Perform the following analysis for the three-tank
mixing process under IMC control for two cases: Xf = 0 and T/ = 6.1.
Use the continuous transfer functions from Example 19.6.
id) Determine the expression for Gods) that could be used to analyze

stability.
ib) Determine the magnitude and phase angle of Godja)) for various

values of frequency, including several decades around the critical fre
quency. Present the results in Bode plots.

(c) Evaluate the Bode plot for the assumptions required for use in Bode
stability analysis.
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Single-Variable Model
Predictive Control 19.14. Consider a process with first-order-with-dead-time feedback dynamics and

first-order disturbance dynamics (e.g., the process in Figure 13.4). The sys
tem is to be controlled with an IMC system and is subject to an unmeasured
step disturbance. Assume the model predictive control calculations can be
designed with perfect models. Answer the following questions for two
cases: (1) zero feedback dead time and (2) nonzero feedback dead time.
id) Define the best, physically possible feedback control performance. For

this question alone, control performance is determined completely by
the ISE of the controlled variable.

ib) Determine the transient response of the manipulated variable that
would result in the behavior of the controlled variable determined in
ia).

ic) Derive the IMC controller and filter Gfis)Gcpis) that would give the
performance defined in ia) and ib) using the feedback measurement
only.

19.15. Using the IMC tuning rules for a PI controller in equation (19.36) and
Figure 19.6, develop graphs of KPKC and 77/(0 + r) versus the fraction
feedback dead time, 0/(0 + x). Compare these graphs with Figure 19.9.


