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17.1 a INTRODUCTION
In all of the control methods considered to this point, the important variables have
been measured, a situation which is desirable and most often possible. However,
not all important variables can be measured in real time, that is, fast enough that
timely control actions can be based on their measurements. There are various
reasons for the lack of key measurements. First, some sensitive analyses have not
been sufficiently automated to provide accurate, reliable measurements without
human management of the procedure; thus, these measurements can be obtained
only infrequently from a laboratory. There are even some properties that cannot
be determined from intermediate material properties in a plant. Usually, these
properties relate to the final use of the material; for example, some qualities of
products such as soap, food products, or polymers depend on their application as
final products and cannot be measured until the products are formulated and used.
Second, even if the real-time measurement is possible, the cost of installing a sensor
in the plant may not be justified by the potential benefits derived from the additional
sensor, especially considering the alternative methods in this chapter. The cost is
not typically high for conventional sensors for measuring temperature, pressure,
flow, and level, but it may be prohibitive for an expensive analyzer with sample
system and ongoing maintenance. Third, the sensor may not provide information
in a timely manner. There are several reasons for slow feedback; for example, the
analyzer may have a very long dead time because it must be located far downstream.
Also, an analyzer may have a long processing time—one hour or longer—which
would delay the feedback information. Finally, there may be no directly measurable
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quantity; for example, the controlled variable may be the heat transferred in an
exchanger.

The lack of measurements of key variables in a timely manner certainly offers
challenges to achieving good control performance. However, unmeasured variables
can sometimes be inferred from available measurements.

To infer: to achieve a conclusion based on information.

Here, the conclusion would be an estimate of the unmeasured variable. Thus,
inferential control uses extra sensors to improve control performance. In this case,
the extra information is additional measured variables that, while not giving a
perfect indication of the key unmeasured variable, provide a valuable inference.
The selection and use of these additional inferential variables requires process
insight and adherence to the methods described in this chapter. Since inferential
control is widely applied with great success, the analysis and design of inferential
variables is important for engineers who design and operate plants, as well as for
control specialists.

Since the characterization of variables as inferential may initially seem some
what arbitrary, the general concept is explained here. All sensors depend on phys
ical principles that relate the process variable to the sensor output, and thus no
sensor "directly" measures the process variable. For example, a thermocouple
temperature sensor provides a millivolt signal that is related to temperature (and
the reference junction temperature), and an orifice flow sensor provides a pres
sure difference signal that is related to the flow (and fluid density). We normally
consider the standard sensors for temperature, pressure, flow, and level as direct
measurements, not inferential variables, because (1) they provide reasonably good
accuracy and reproducibility, (2) they do not usually require corrections (e.g.,
for reference junction temperature), and, most importantly, (3) the relationship
between the sensor signal and the process variable is not specific to a particu
lar process. For example, essentially the same relationship between the pressure
difference across an orifice and the flow through the orifice is used in thousands
of plants. In contrast, a relationship between a reactor temperature and conver
sion is clearly specific to a particular process and is considered an inferential
variable.

Since there is no generally accepted naming convention, we will refer to the
variable we would like to control as the "true" controlled variable, CV,(r). The
inferential variable, CV,(f), can be used because of a process-dependent relation
ship, which must be determined by the engineer. For example, a good inferential
variable in Figure 17.1 is closely related to the true variable so that controlling
CV/(f) will maintain CV,(f) close to its desired value. In most cases, the inferen
tial variable is not as accurate as an on-stream sensor of the true variable. Also,
the approximate relationship used for the inferential variable has a limited range,
beyond which the inferential variable might not be satisfactory. It is important to
remember that zero steady-state offset for the true variable is possible only when
it is measured, perhaps infrequently, and used in the control system to adjust the
set point of the inferential controller, SP/(.s).
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Figure 17.1 can be used to determine the relationship necessary for good
inferential control. First, the response of the true controlled variable to a disturbance
can be evaluated.

CVds) = Gdds)Dis) + Gptis)MVis)
n , xn^ Gptis)Gcis)Gdds)= Gdtis)Dis)- Dis)

(17.1)

\+Gpiis)Gcis)
A key goal of the control system is to maintain zero steady-state deviation in the
controlled variable. This can be evaluated by applying the final value theorem to
equation (17.1) with a step disturbance and PI feedback controller to give

iKptKdiKc)/Tilim CV(f) = lim CV(s) = Kdt AD -
t-*oo iKp iKJ /T,

AD = 0 (17.2)

Thus, the criterion for perfect steady-state inferential control in response to a distur
bance is that Kdt/Kpt = Kdi/KP[.

As the process relationships deviate from this criterion, the performance of the
inferential controller degrades. Thus, an important engineering decision is the
selection of a proper inferential measured or calculated variable.

17.2 n AN EXAMPLE OF INFERENTIAL CONTROL

Application to a flash separator demonstrates the typical analysis steps for inferen
tial control, along with a very common inferential variable. The process is shown
in Figure 17.2 where a stream of light hydrocarbons is heated, the pressure of
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Flash separator considered for inferential control of ethane
composition in the liquid from the drum.

TABLE 17.1

Base-case data for flash process in
mole percent

C o m p o n e n t F e e d L i q u i d V a p o r
Methane 10 1.3 19.8
Ethane 20 10.0 31.2
Propane 30 30.2 29.8
/-Butane 15 20.1 8.8
n-Butane 20 30.0 9.3
n-Pentane 5 8.4 1.1

the stream is lowered, and the liquid and vapor phases are separated in a drum.
The base-case compositions of all three streams are given in Table 17.1. The true
controlled variable is the ethane concentration in the drum liquid; however, an
analyzer is not available, perhaps because of cost. (Accurate on-stream analyzers
are commercially available for such a measurement.) The goal is to infer the con
centration of ethane in the liquid stream leaving the drum, using the sensors shown
in the figure. This goal may or may not be possible within the accuracy required;
therefore, an analysis of the system is performed.

From a knowledge of vapor-liquid equilibrium, we expect that the temperature
of the drum and the compositions will be related. In fact, the following model of
the flash shows the relationship.

FMfeed = FML+FMv
FMfeedZ/ = FMLX, + FMvYt

Yi = KtX,
(17.3)



where FM = molar flow
X, Y, Z = mole fractions for liquid, vapor, and feed

K-, = vaporization equilibrium constant depending on T, P
P = pressure
T = temperature

From equations (17.3) it can be seen that the liquid ethane composition is a function
of the feed composition and the temperature and pressure in the flash vessel.
(Further details on the flash calculation and the data used in this example can be
found in Smith and Van Ness, 1987.) Let us assume that the drum pressure is
controlled at essentially a constant value by adjusting a valve in the vapor line and
that the temperature can be maintained at its desired value by manipulating the
steam flow. If the feed had only two components, the temperature and pressure
would uniquely determine the liquid and vapor composition; however, the feed has
six components. Therefore, the pressure and temperature do not exactly define the
compositions in the two phases. The essential question to answer is how closely
the temperature is related to the liquid ethane composition, that is, how accurate
an inference of liquid ethane concentration is supplied by the temperature when
changes in the process operation occur.

The proposed inferential system is summarized by the following variables:
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True variable = xe = liquid composition of ethane to be controlled
at 0.10 ± 0.02 mole fraction

Inferential variable = T = temperature
Manipulated variable = heating medium flow
Disturbance = feed composition (as subsequently defined)
Inferential relationship: xe = aT + fi (17.4)

An analysis is performed to establish whether the relationship between the temper
ature and the liquid ethane concentration is satisfactory for inferential control. It is
not possible to develop a closed-form analytical model of this process; therefore,
the inferential model will be developed based on data representing the process.
This data could be developed from mathematical simulation or plant experimen
tation. In this case, where excellent data exists for the vapor-liquid equilibrium, a
simulation was performed to generate the relationship shown as the "base-case"
line in Figure 17.3. The first step in evaluating the potential inferential relation
ship involves determining whether the sensitivities are appropriate. Figure 17.3
shows that the slope is about —0.0027 mole fraction per °C, which means that
the expected errors in the temperature measurement and control, here estimated to
be ±0.5°C, will not introduce a significant error in the calculated estimate of the
ethane concentration.

Since the temperature has passed the first step, the analysis is extended to
the second step by including disturbances: unmeasured input operating vari
ables that are expected to change significantly. In this example, the feed com
position is the major disturbance. The question is whether the temperature re
mains a satisfactory inferential variable when the feed composition changes; to
answer this question, additional cases that characterize typical plant variability
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FIGURE 17.3

The relationship between the flash temperature and the
concentration of ethane in the liquid at the base-case pressure (1000
kPa). Changes in methane are compensated by changes in butane of
equal magnitude and opposite sign.

have to be included in the analysis. In this example, the expected feed composition
change from the upstream units involves offsetting differences in the methane and
butane, which can be up to 5 mole %. The relationships between temperature and
composition for the extremes of feed composition variation are shown in Figure
17.3. Clearly, holding the temperature constant is not equivalent to maintaining
the ethane concentration constant. For the expected changes in feed composition
and the expected accuracy in controlling the temperature, ±0.5°C, the range of
ethane liquid composition is from 0.091 to 0.117 mole fraction when the measured
temperature is maintained at the proper value for no model error and nominal feed
composition (25.5°C). Whether this accuracy is acceptable depends on the plant
requirements; for this example it satisfies the stated objectives of inferential control
(±0.02 maximum error). Since the accuracy with the inferential variable is accept
able, the temperature provides an acceptable steady-state inferential measure of
ethane concentration in the liquid stream, and the control strategy in Figure 17.2
could be appropriate. If it were not, perhaps due to a narrowing of the acceptable
ethane concentration variation, an on-stream analyzer would be required.

If the steady-state accuracy is satisfactory, the dynamics of the potential in
ferential control system must be evaluated. Good dynamic responses, as discussed
in Chapter 13, would have such characteristics as a fast response with a short dead
time. For this example, the temperature could be controlled by adjusting the heat
ing medium flow. Therefore, the dynamics seem favorable because the response
would be fast. This judgment is supported by the dynamic response of this system
presented in Chapter 24.

Recall that the temperature controller set point must be corrected based on a
measure of ethane concentration to achieve zero offset. The composition feedback
could involve the temperature set point being occasionally corrected by the oper
ator based on infrequent measurements in the laboratory performed on samples



A To containment

—(pah)
t £$3—*" VaPo r

^

• 5

C $ 3 —
Liquid

2)
2

541

Inferential Control
Design Criteria

Propane and
lighter

yt>
£̂0

Butane

Steam Heavies
FIGURE 17.4

Flash inferential temperature controller reset in a cascade design by a downstream analyzer.

taken from the drum liquid. An alternative design, shown in Figure 17.4, involves
the temperature set point being adjusted by a downstream analyzer controller in
a cascade strategy. In this design, the analyzer is located downstream because
of cost; the single downstream analyzer can measure components for distillation
control as well as the flash drum control. Note that the cascade strategy adjusting
the inferential temperature would be advisable in Figure 17.4, because of the slow
dynamic response between the heating medium and the analyzer. With the infer
ential temperature controller, reasonably tight control of the ethane concentration
can be achieved without installing an additional on-stream analyzer at the outlet
of the flash drum.

Since the inferential set point is ultimately reset based on a measure of the
true controlled variable, the inferential measure need not be extremely accurate.
However, it should be reproducible; that is, the inferential sensor should provide
essentially the same signal for the same process conditions. Then the slower feed
back based on the true variable would correct for inaccuracies in the inferential
relationship and ultimately return the true controlled variable to its desired value.

The control example in this section, using temperature of a flash equilibrium to
infer composition, is a standard practice in many industries; in fact, it is so common
that the term inferential may seem exaggerated. However, it provides an excellent
initial example. The next section provides a summary of the general design method
for inferential control, which can be applied to more challenging cases.

17.3 B INFERENTIAL CONTROL DESIGN CRITERIA
The preceding example addressed all of the major design criteria, which are sum
marized in Table 17.2. First, an analysis of the process economics and expected
disturbances is performed to determine whether an inferential variable is appro
priate. If yes, the process must be analyzed to identify a measurable variable
with an acceptable relationship to the unmeasured, true controlled variable. It is
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C H A P T E R 1 7 — ; "
i n f e r e n t i a l C o n t r o l I n f e r e n t i a l c o n t r o l i s a p p r o p r i a t e w h e n

1. Measurement of the true controlled variable is not available in a timely
manner because
• An on-stream sensor is not possible.
• An on-stream sensor is too costly.
• Sensor has unfavorable dynamics (e.g., long dead time or analysis time)

or is located far downstream.
2. A measured inferential variable is available.
An inferential variable must satisfy the following criteria:
1. The inferential variable must have a good relationship to the true controlled

variable for changes in the potential manipulated variable.
2. The relationship in criterion 1 must be insensitive to changes in operating

conditions (i.e., unmeasured disturbances) over their expected ranges.
3. Dynamics must be favorable for use in feedback control.
Correction of inferential variable
1. By primary controller in automated cascade design
2. By plant operator manually, based on periodic information
3. When inferential variable is corrected frequently, the sensor for the inferential

variable must provide good reproducibility, not necessarily accuracy

especially important to ensure that the inferential variable is adequate for the ex
pected range of plant operating conditions. Usually, the initial selection is based
on a steady-state analysis, and the dynamic response is subsequently evaluated.

Two similar approaches are used for designing inferential controllers. Both
approaches are described in this chapter, along with industrial examples. One ap
proach determines the best inferential variables based on data (experimental or
simulation) from the process; this type will be referred to as the empirical ap
proach. The inferential temperature in the previous flash control is an example.
The other approach uses closed-form analytical models as a basis for inferen
tial relationships. An example of this approach, which will be referred to as the
analytical approach, is applied to a chemical reactor in Section 17.6. The ap
plication of either approach involves nearly the same steps to yield an inferen
tial model for control. The analysis steps for each method are summarized in
Table 17.3.

Application of the design criteria in Table 17.2 and the steps in Table 17.3 en
sures that a proper inferential variable is selected, if one exists. These approaches
are usually adequate, because inferential variables are employed to reduce, al
though not eliminate, large offsets due to disturbances. To reiterate, an inferential
strategy can achieve zero offset only when the true controlled variable is ultimately
measured and used to adjust the set point of the inferential controller.
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S t e p s r e q u i r e d t o d e s i g n a n i n f e r e n t i a l c o n t r o l l e r i w i P W f ^
Implementation Issues

S t e p E m p i r i c a l a p p r o a c h A n a l y t i c a l a p p r o a c h
1 Select one or a few measured variables Select one or a few measured variables

for evaluation based on process insight. for evaluation.
2 Develop a representative set of data that Derive the analytical model from

contains typical changes in the fundamentals,
manipulated and disturbance variables.

3 Develop a correlation between the The analytical model provides the
measured inferential and true controlled necessary correlations,
variables by fitting the model to the data
to determine the unknown parameters.

4 Evaluate the accuracy and reproducibility Same, although sensitivity information
of the correlation against process needs. can be obtained directly from the
This evaluation should consider realistic model.
levels of noise on the inferential variable.

5 Select the best of the inferential variables and evaluate the dynamic response for use
in feedback control.

6 If the best inferential variable is acceptable, design the control system including
ultimate feedback from the true variable.

7 If no measured variable has both acceptable accuracy and acceptable dynamics,
then inferential control is not possible. An on-stream sensor should be purchased
and installed, if available. If no sensor is available, then the control objectives
cannot be achieved unless other steps, such as reducing disturbances, can be
taken to reduce the variation in the true controlled variable.

17.4 a IMPLEMENTATION ISSUES

An inferential controller using a single measured variable is basically the same as
any other single-loop or cascade controller, and no special implementation consid
erations are necessary. If the correction from the true controlled variable is made
manually by the operator, a simple correlation is helpful in deciding the necessary
change in inferential controller set point. In the flash separator example, the slope
of the correlation in Figure 17.3 indicates that the temperature should be changed
+1°C for a change of —0.0027 mole fraction ethane. As an example of how the
person would use the correlation, if the laboratory analysis were 0.0040 mole
fraction below the desired ethane concentration, the operator would implement a
-1.5°C change in the temperature set point based on the correlation.

The situation changes when additional variables are used in the inferential
relationship. In the flash separator, the strategy in Figure 17.2 might not be adequate
if the drum pressure varied significantly, which can occur when the pressure is not
controlled at the drum but varies with downstream units. A simple manner for
considering this change would be to add an additional term, which would account
for changing pressure, to the inferential correlation used to calculate the ethane
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concentration. The enhanced inferential relationship would be

Xe = otT + yP + p' (17.5)

Again, this expanded relationship would be developed based on representative
data for the system over the expected range of pressures. The effect of pressure
for the base case feed concentration is shown in Figure 17.5, which would provide
information for an additional linear term that would be valid over a limited range. A
correlation using two measured variables in the inferential control strategy is shown
in Figure 17.6. This is often referred to as & pressure-corrected temperature, which
refers to the correction of the relationship between temperature and composition
to account for pressure changes.

The reliability of inferential controllers is the same as that of other similar sys
tems. Controllers using additional variables would be expected to have lower reli-

950 1000 1050
Pressure (kPa)

1150

FIGURE 17.5

The effect of pressure on ethane concentration in the
liquid from the flash process at the base case temperature
and feed composition.

Controlled variable = T- 0.051 (P - 1000)
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Enhanced inferential controller with compensation
for changes in pressure.



ability. For example, the pressure-corrected temperature controller in Figure 17.6
uses two measurements, and its reliability would be lower than the temperature-
only design in Figure 17.2. Since sensors used in inferential control tend to have
high reliability (their purpose is to replace the expensive and less reliable sensors),
the slight loss in reliability is not usually a significant concern.
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17.5 Q INFERENTIAL CONTROL EXAMPLE: DISTILLATION
This example extends the concept of the flash separator to a distillation tower.
In operating a distillation tower, the product purities are achieved by adjusting
manipulated variables such as the reboiler heating medium and distillate product
flows. On-stream analyzers can be used successfully to control distillation; how
ever, each analyzer is expensive, and not all towers require such accurate control of
both product qualities. Therefore, an important question arises concerning which
tray temperature, if any, can be used to infer the product composition. An analysis
will be described here that, by following the general inferential design criteria,
provides an answer to this question. This example considers the distillation tower
in Figure 17.7, where the top product composition is to be controlled, but no ana
lyzer is available. The tower separates a feed that contains benzene, toluene, and
xylene. The top product contains benzene and toluene and 1 mole % xylene, and
the bottom product contains xylene and 2.4 mole % toluene. The temperature pro
file is given in Figure 17.8 for the base-case operation. The goal is to control the
inferred top composition by adjusting the distillate flow. The potential inferential
control strategy is summarized as follows:

True variable = xD = heavy key in distillate = 1 mole %
Inferential variable = T = tray temperature
Manipulated variable = distillate flow rate
Disturbances = reboiler duty, feed composition
Parameters = tray efficiency, thermodynamics
Inferential relationship: xd=<xT+P (17.6)

A procedure similar to the flash example is followed, except that several tray
temperatures are initially considered, with the goal of selecting the best single tem
perature. The trays considered are numbered 1,5,10, and 30 from the top; all trays
could be included in this analysis, but that would expand the number of graphs.
As we learned in Chapter 16, transformations of highly nonlinear relationships
can often improve the performance of linear control systems. In this example, the
log of the composition is controlled to linearize the feedback loop; this feature
is not required for inferential control but is a good practice in distillation control
(e.g., Koung and Harris, 1987) and is included in the control design. Potential
relationships between tray temperatures and overhead composition for changes
in operating conditions are evaluated in Figure 11.9a through c for changes in
the manipulated variable (distillate flow) and in the disturbances (reboiler duty
and feed composition). The distillation tower is too complex to use an analyti
cal model to determine the relationships. Therefore, the values in these figures
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FIGURE 17.7

Parameters for the distillation tower investigated for inferential tray
temperature control.

20
Tray number

FIGURE 17.8

Tray temperature profile for the base case distillation
tower.

were obtained by detailed steady-state simulations of the tray-by-tray model with
accurate thermodynamic data (Kresta, 1992).

For good inferential control, the selected tray temperature would have nearly
the same constant slope for all figures. Each of the candidate tray temperatures
is evaluated individually to determine whether it satisfies the design criteria. The
results in Figure 17.9a show the relationship as the manipulated variable changes,
and the results in Figure 11.9b and c show the relationship as disturbances occur.
All figures show clearly that the tray 1 temperature does not change significantly
even though the tower operation and top product purity change. Thus, the top
tray temperature would be a very poor inferential variable, because the sensor
errors and low-magnitude noise would invalidate any correlation drawn from these
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FIGURE 17.9

Relationship between tray temperature and distillate
composition; (a) for ±5% changes in the distillate flow with the

feed composition and reboiler duty constant; ib) for ±5%
changes in the reboiler duty with distillate flow and feed

composition constant; ic) for changes in feed composition with
distillate flow and reboiler flow constant.
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simulations; therefore, tray 1 will not be considered further. Additional analysis
of the figures reveals that tray 30 is not acceptable, because the slope changes
sign between Figure 17.9a and b. For this tray temperature, a temperature increase
would indicate an increase in top purity for some situations and a decrease in
top purity for other situations. This would not be a good inferential variable—a
result that might be expected, because the feed tray is between tray 30 and the
top product, which is usually not advisable in distillation tray temperature control.
Of the remaining trays, both trays 5 and 10 have reasonably linear responses,
with sensitivities much greater than the noise in the temperature sensors and not
changing greatly for the three figures. Thus, the temperatures for trays 5 and
10 satisfy the steady-state criteria based on this open-loop data. The preliminary
conclusion is that either tray 5 or 10 would be an acceptable inferential temperature.

To evaluate this preliminary conclusion, tray 7 was chosen as representative
of either tray 5 or 10 and was controlled by adjusting the distillate flow as shown
in Figure 17.10 for feed composition disturbances. The steady-state errors in top
product composition are plotted in Figure 17.11 for the case without an analyzer
resetting the inferential controller. This measure of performance is used to evaluate
the reduction in steady-state offset from perfect control that could be achieved with
inferential tray temperature control. As can be seen, the top composition remains
much closer to its desired value compared with the results without inferential
control (open-loop), indicating that, in this case, the tray 7 temperature is a good
single-tray inferential variable. Thus, inferential control offers the potential for
much improved control performance.

The dynamic response of the inferential controller should also be evaluated.
In this case, the tray temperature, being in the top section of the tower, introduces
only a few trays between the controlled and manipulated variables. The dynamic
response between the manipulated distillate flow and the controlled temperature
is expected to be fast. Thus, the selection would appear to be appropriate from a
dynamic viewpoint.

Analyzer controller
not required for

inferential control

—D&H*-1

C£r—
FIGURE 17.10

Control strategy for tray temperature inferential
control.



0.01

-0.015
7 8 9 1 0 1 1
Percent of benzene in feed

1 2 1 3 1 4

549

Inferential Control
Example: Chemical

Reactor

Open-loop Tray 7 control

FIGURE 17.11

Steady-state offset for the distillation tower without control
(open-loop) and with tray 7 inferential control (without

analyzer feedback).

To achieve the zero offset performance at steady state shown in Figure 17.11,
the tray temperature must be adjusted to correct small errors in the inferential rela
tionship. This can be done by an operator, who would make manual changes to the
set point based on periodic laboratory analyses. Alternatively, the tray temperature
controller can be a secondary that is reset by an analyzer feedback controller. Such
an approach is shown in Figure 17.10.

The procedure just described does not always identify a good tray temperature,
because in some distillation towers no single tray temperature is a good inference of
product composition. An example of this situation occurs when the key components
have nearly the same volatility. The tray temperatures are not very different, so that
the temperature variation due to composition changes is within the measurement
accuracy of the sensor; in this situation the tray temperatures would not be expected
to correlate with product composition. This situation occurs in the separation of
propylene and propane by distillation, which demands a high-purity top product
with a relative volatility of about 1.1 (Finco et al., 1989). To provide good product
composition in these distillation towers, on-stream analyzers are usually provided.

The development of an empirical inferential model in this section followed
the same steps used for the flash separator. Inferential tray temperature controllers
designed using methods similar to the analysis in this section are widely applied
in the process industries; in fact, far more distillation tower product composition
controllers use tray temperature inference than use on-stream analyzers.

17.6 a INFERENTIAL CONTROL EXAMPLE: CHEMICAL
REACTOR
The inferential control examples for the flash and distillation processes demon
strated the empirical inferential method, in which the model is based on fitting
representative data. In this section the analytical method is demonstrated for a
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FIGURE 17.12

Packed-bed chemical
reactor considered for
inferential control.

process that can be represented by a simple closed-form model. The example
in this section is the packed-bed reactor with an exothermic reaction shown in
Figure 17.12. The goal is to control the moles reacted without an on-stream ana
lyzer. Simplified steady-state material and energy balances, assuming no heat loss,
for the packed-bed reactor with a single reaction occurring are

A - + B

AT = -AHnn

Ar=T4-T3

C/Un v A/irxn A ,-,
X A = A C a

pCP pcP (17.7)

where Ca = concentration of A, moles/volume
p = density, mass/volume

Cp = heat capacity, energy/(°C • mass)
AHnn = heat of reaction, energy/mole

XA = fraction of feed reacted = (Ca^ — CAout)/CAin = ACa/Cahi

A brief summary of the inferential system being evaluated is

True variable = ACa = moles of A reacted
Inferential variable = AT = temperature difference
Manipulated variable = heating medium flow
Disturbances = inlet concentration, feed flow rate
P a r a m e t e r s = P, C P * A H n n
Inferential relationship: ACA = aAT+fi (17.8)

To evaluate the inferential measurement, the design criteria are applied; they re
quire a good relationship between the true variable and the inferential variable
when the manipulated variable is changed and little modification to the relation
ship when disturbances occur. On the first issue, there is clearly a strong relation
ship between temperature difference and amount reacted, which could provide a
reliable inference as the inlet temperature changes. The success of this approach
depends on the temperature difference being much larger than the sensor error
and noise in the temperature sensors, as is often, but not always, the case. On the
second issue, the relationship is insensitive to changes in operating variables such
as feed rate and inlet composition as seen in equation (17.7). However, the rela
tionship is dependent on parameters such as heat capacities and heat of reaction;
if these parameters are relatively constant, they will not influence the accuracy of
the inferential measurement. Therefore, controlling temperature difference across
the reactor could provide good inferential control of amount reacted.

Notice that the analysis to this point is for steady-state conditions. As previ
ously mentioned, the control system dynamics must also be investigated. A typical
dynamic response of the inlet and outlet temperatures and the instantaneous tem
perature difference to a step increase in the heating medium valve position are
given in Figure 17.13. The inlet temperature responds quickly, while the outlet
temperature responds slowly, because of the time required to heat the catalyst.
Therefore, the instantaneous temperature difference is not a good inference of
reactor performance, even though the steady-state temperature difference is an
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Plot of key variables for packed-bed reactor
inferential control. Note the significant inverse

response of the instantaneous temperature difference.
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acceptable inferential variable. The figure demonstrates the complex inverse re
sponse between the manipulated (valve position) and potential controlled (AT)
variables that results from this seemingly simple inferential control design. The
initial inverse response can be a large multiple of the final change, and a PID con
troller might not perform well for this response, depending on the extent of the
inverse response, as demonstrated in Example 13.8.

One method for using the available measurements is to wait for the process
to achieve steady state before calculating a correction in the heating medium flow.
This approach would result in very slow feedback and poor performance if frequent
disturbances occur. A better control design for this example would compensate the
temperatures used in the difference to account for the dynamics. One approach for
this is shown in Figure 17.14, in which the inlet temperature is passed through a
dynamic element that matches the outlet temperature response. The element TY-
2 in the control strategy has the dynamics of the transfer function T4(^)/T3(j).
Then, the two temperatures can be compared and used for control with a PID
control algorithm, which would not "see" the inverse response. Another approach
would be to use a predictive control algorithm in place of the PID; predictive
control, which employs a simple dynamic model in the control calculation and is
able to control processes with complex responses like the one in Figure 17.13, is
presented in Chapter 19.

If the goal in this example were to control the outlet concentration Caoiu rather
than the conversion, the analysis would have to be repeated for this different true
controlled variable. The relationship between outlet concentration and temperature
difference is unchanged as equations (17.7); however, a key operating variable that
might change significantly—inlet concentration—appears in the relationship, as
follows.

AT = — (CAin — Caoui)
pcP

(17.9)

Therefore, maintaining the temperature difference constant does not ensure con
stant outlet concentration when the inlet concentration changes. Further study

Note: TY-2 is a dynamic
model with dynamics of
T3 to T4, e.g.

l.Qg-fr
tt + 1 &

FIGURE 17.14

Design for packed-bed reactor
inferential temperature difference

control that does not have an inverse
response.
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would have to be performed to determine the typical variation in inlet concentration
and whether this variation would introduce unacceptable errors in the inferential
calculation of Caoui-

One more possibility can be explored in the reactor example. In chemical react
ing systems with multiple reactions, it is often important to control the selectivity
of feed to the more valuable product as well as controlling the total conversion.
Thus, we investigate here whether the temperature difference can be used to infer
selectivity. The steady-state energy balance follows for a reactor with two parallel
reactions in which the feed can react to either product B or product C.

A - >
A - >

AT =

B with moles reacted = f g
C with moles reacted = fc
j -AHB) r^B + ( -A / f cU fc

pCP

(17.10)

It can be seen from the equations that the selectivity is not uniquely determined
when the temperature difference is specified. A measured temperature difference
could be the result of many ratios of the products B and C. Therefore, the tem
perature difference is not a satisfactory inferential variable for selectivity in this
case. In fact, if the ratio of fe/fc changes significantly during plant operation and
the heats of reaction are different, the temperature difference is not even a good
inference of the total conversion of reactant A.

The development of an inferential model based on fundamental modelling
principles was demonstrated in this section.

When possible, the inferential control model should be based on fundamental mod
elling principles.

Flue gas

1
IFCJ--I

Feed-H—■£&}

Fuel gas
FIGURE 17.15

Fired heater process with basic
controls considered for
enhancement by inferential
control.

This method provides excellent insight into the variables included in the model
as well as the model structure. The model also provides insight into the accuracy
of the inferential estimate for changes in the operating variables and physical
properties.

17.7 ® INFERENTIAL CONTROL EXAMPLE: FIRED HEATER
As another example, inferential control can be combined with cascade control to
improve the performance of the fired heater shown in Figure 17.15. The outlet
temperature of the fluid in the coil is to be controlled tightly, and a primary sensor
is available for this purpose. As discussed in Chapter 14, this strategy benefits
from a cascade design with a secondary fuel flow controller that corrects for some
disturbances. However, the cascade does not correct completely for the effect of
changing fuel gas density. The upset occurs because the heat of combustion changes
as a result of changing fuel gas composition (density); thus, the heat transferred to
the coil is disturbed. An improvement to the cascade control design in Figure 17.15
involves an inferential variable as the secondary of the cascade that indicates the
heat released through combustion of the fuel gas. The best inferential variable of
the heating value depends on the gas composition; a good inferential measure for
a mixture of light hydrocarbons without hydrogen, which is a common industrial



fuel gas, is the mass flow rate of fuel (see question 17.7). To improve the response
to a composition disturbance, the secondary controller in the cascade design could
be altered to ensure that the mass flow, rather than the pressure difference across
the orifice, is maintained constant. The potential inferential system is summarized
as follows:
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True var iable = Q = actual rate of heat released via combustion
Inferential variable = Fm = mass flow rate of fuel
Manipulated variable = fuel valve position
D i s t u r b a n c e = fuel composition
Inferential relationship: Q = aFm+0 (17.11)

The mass flow can be calculated as the product of the volumetric flow rate and the
density according to the following equation:

Fm = K.
AP

p = KjpVAP (17.12)

where AP = pressure difference across the orifice
p = density of the fuel gas

The inferential calculation requires an additional measurement: the density
of the fuel gas at the stream conditions. This measure can be used so that the
secondary controller maintains the heat fired, rather than the AP, at the desired
value. The improved control strategy shown in Figure 17.16 provides superior

Flue gas

1
Feed-H $Q-

* - 0 ~

H^

4.m4k-cv~~

-®-
Fuel gas

FIGURE 17.16

Fired heater with inferential control for
better performance as fuel gas composition

changes.
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mm^mmmmmMmtM fuel flow so that the total heat fired is maintained at its desired value. Control
CHAPTER 17 designs based on this principle have proved to be extremely successful in industrial
Inferential Control applications (API, 1977). The reader should be aware that the other combustion

inferential measurements and control calculations should be used for different
fuel compositions, such as when hydrogen or inert gases are present (Duckelow,
1981); thus, the control design that is satisfactory for this example is not generally
applicable for all combustion systems.

17.8 [l ADDITIONAL TOPICS IN INFERENTIAL CONTROL

Application of the method described in the previous sections often leads to an
adequate inferential model if one can be found. Several alternative approaches to
inferential control require advanced mathematics to cover completely; thus, only
the basic concepts are introduced here, along with references for further study.

Multiple Measurements
Often there are many measurements available for use in an empirical inferential
model. If the measurements have independent effects on the true controlled vari
able, the method explained in this chapter can be used. However, the measurements
may have correlated effects on the true controlled variable. In the correlated case,
caution must be used when fitting the model to the empirical model. For example,
an inferential model for the distillation example could be formulated using many
(even all) tray temperatures and flows as follows:

ixD)i =ot\T\+a2T2 + --'+ an+\FR + ctn+2FD H + amP (17.13)

where ixo)i = calculated estimate of the true controlled variable
Ti = temperature of ith tray
FR = reboiler heating medium flow rate
FD = distillate product flow rate
P = pressure

The coefficients a,- could be determined from plant data using linear regression
(e.g., Draper and Smith, 1981); however, the strong correlation among the in
put variables can lead to a model with poor predictive ability. Note that the tray
temperatures will be strongly correlated among themselves, since adjacent tray
temperatures tend to increase or decrease as the product purity changes. The diffi
culty arises because the large number of parameters enables the model to fit much
of the "noise" in the data. More advanced statistical model building and diagnostic
methods based on multivariate statistics are recommended when correlated inputs
are used (Kresta et al., 1994; Mejdell and Skogestad, 1991).

Plant Conditions
It is important to recognize that the empirical model represents correlation between
the inputs (inferential variables) and output (true variable) in a base-case set of data
used in model building. This empirical model should be used only within the range
of plant operating conditions used for building the model. Operating conditions



could be feed rates, feed composi t ions, product qual i ty specificat ions, or contro l 555
strategies. The empirical inferential model could give poor predictions when used i^toiMirfjMMyagWfcKi
outside the base-case conditions and should be reestimated when plant operations, Conclusions
including control structure, change (Kresta et al., 1994).

Kalman Filter
A powerful method exists when a fundamental dynamic model is available. The
Kalman filter provides a method for using measured variables to update the funda
mental model and provide a dynamic estimate of the unmeasured true controlled
variable (Grewal and Andrews, 1993). This method requires mathematics beyond
the general level in this book; considerable engineering effort; and, when applied,
more intensive real-time computing. It should be considered when a dynamic in
ferential variable is required.

17.9 m CONCLUSIONS
The importance of inferential control cannot be exaggerated. Many variables are
difficult or impossible to measure on-stream for use in automatic, real-time control.
To counter this shortcoming, inferential control is widely applied in the process
industries. It may seem surprising that most of the analysis in this chapter involved
steady-state relationships. This situation results from two causes. First, the ma
jor benefits for inferential control often result from a substantial reduction of the
steady-state offset of the true controlled variable from its desired value. To achieve
this goal, the inferential variable with the most accurate steady-state relationship is
desired, even if the dynamics of the inferential controller are not the best. This situ
ation is demonstrated in the chemical reactor example, where the inverse response
dynamics are not desirable.

Another reason for the emphasis on steady-state analysis is the lack of a gen
erally accepted design method for dynamic inferential control based on empirical
models. Some initial developments in this area are noted by Kresta (1992). Note
that the Kalman filter also addresses dynamic control of unmeasured variables
when fundamental models exist.

When engineers first encounter inferential strategies, they often believe that
the designs were based on trial-and-error methods or perhaps developed through
years of observing process behavior. To the contrary; the evaluation of inferential
variables follows the procedure presented in this chapter. However, the insight
required for selecting the proper measurements and process relationships cannot
be condensed into a simple procedure. This is a critical step, because inferential
relationships can be developed over time using plant data only if the design engi
neer has provided the appropriate sensors. An additional challenge is to determine
the proper candidates from among the numerous existing sensors—a decision re
quiring process knowledge, tied to the understanding of the final application with
noisy sensors and process disturbances. Engineers should view this situation as an
opportunity to apply their technical and problem-solving skills to this important
aspect of process monitoring and control, recalling that "engineering insight" usu
ally comes from application of fundamental principles, quantitative analysis, and
hard work.
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ADDITIONAL RESOURCES
For additional examples of selecting a single tray temperature for distillation con
trol, see the following:

Luyben, W., "Profile Position Control of Distillation Columns with Sharp
Temperature Profiles," AIChE J., 18,1,238-240 (1972).

Tolliver, T., and L. McCune, "Finding the Optimum Temperature Control
Trays for Distillation Columns," In. Tech., 75-80 (September 1980).

Experimental design is a crucial step in collecting data for model structure
selection and parameter estimation. Only the most rudimentary data was used in
the examples in this chapter; experimental design is covered in

Box, G., S. Hunter, and J. Hunter, Statistics for Experimenters, Wiley, New
York, 1987.

QUESTIONS
17.1. (a) Discuss the inferential design criteria in your own words.

ib) Why are cases with changes in disturbance and manipulated variables
included when selecting an inferential variable?
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id) Discuss how specifications on product quality and economic values
for energy and product quality would be used when evaluating an
inferential variable.

ie) Complete the block diagram in Figure 17.1 for closed-loop, feedback
control of the true controlled variable, CV,(.s), using cascade control.
Give the required modes for both controllers in the cascade to ensure
that there would be zero steady-state offset in the true variable for a
steplike disturbance.

17.2. When the inferential controller is a secondary in an automated cascade
design, the primary controller can be thought of as correcting the inferential
model.
ia) Given the following model for the control strategy in Figure 17.5,

explain how the primary controller corrects the inference; that is, which
parameter(s) are essentially modified through the feedback.

xe = otT + ft
ib) How does this feedback affect the stability of the secondary loop?

17.3. The measured variables used directly or in calculations for inferential vari
ables described in this chapter have been outputs (causes) from the process.
It would be possible to measure inputs, both manipulated variables and dis
turbances, and build an inferential model using process input variables.
id) Describe the similarities between inferential control using input vari

ables and other enhancements covered in Part IV.
ib) Discuss the differences between using process output and input vari

ables for inferential control and when each would be preferred.

17.4. An analyzer feedback control system that adjusts the reboiler heating
medium flow, as in Figure Q14.6, is subject to disturbances in heating
medium temperature. Design an inferential controller, implemented as a
cascade secondary, that would improve control performance for the distur
bances noted. State the assumptions you have made in the design.

17.5. Consider the following questions for the flash process in Section 17.2.
id) How well would the temperature inferential controller perform if the

feed had only two components: ethane and propane?
ib) For the original feed composition and operating conditions in Ta

ble 17.1, how well would the temperature perform as an inference
of the ratio of n-butane to n-propane in the liquid phase?

17.6. The series of two chemical reactors in Example 3.3 are considered in this
question. The reaction is A -» B, and because of the cost of sensors, the
measurements available are the feed flow, tank temperature, and second-
tank composition of component A. Evaluate the use of these measurements
for inferential control of the composition of component B in the second
tank, which should be maintained within ±0.05 mole/m3.



558 17.7. Collect data on the heats of combustion for light hydrocarbons (Cl to C4),
]MmmmmmMmmmm\ hydrogen, and carbon monoxide.
CHAPTER 17 id) In Section 17.7, the proposal was made that the mass flow is an accept-
inferentlai Control a^Q inferential variable for the rate of heat release upon combustion

for a stream of light hydrocarbons only. Evaluate this statement for
significant changes in the stream composition.

ib) Reconsider (a) when significant hydrogen has been added to the stream.
Is mass flow an acceptable inference? If not, what measured or calcu
lated flow quantity is an acceptable inferential variable?

(c) Reconsider ib) with significant carbon monoxide.

17.8. Implementing an inferential controller using several measured variables
should involve special care.
id) Provide a detailed description of the calculations required to imple

ment the digital inferential controller using temperature and pressure
shown in Figure 17.7. You should consider initialization, calculation
of the controlled variable, the feedback controller, and reset windup
protection.

ib) Assume that it is possible to check the validity of all measured sig
nals used in id)', this might be achieved by ensuring that the signal is
within the allowable range. Add the logic used to respond to an invalid
measurement for pressure and temperature. (Hint: The logic should be
different for the two measurements.)

ic) Discuss the use of filtering the measured variables in inferential control.
17.9. A criterion for perfect steady-state inferential control in response to a dis

turbance is given in Section 17.1. Extend this approach to determine the
criterion for perfect steady-state inferential control in response to a step
change in the inferential controller set point. How would you determine
which of these criteria is important for a potential application?

17.10. The concentration of component B (Cb) in the reactor system in question
5.12 is to be controlled. It cannot be measured, but the feed concentration
of component A (Cao). reactor volume, and inlet flow can be measured.
Propose an inferential variable for this system and discuss its strengths and
weaknesses.

17.11. Derive the model used for the inferential control of the fixed-bed reactor,
equation (17.7).
ia) Discuss how you would evaluate (1) the required accuracy (or repro

ducibility) for the temperature sensors, (2) the effects of heat transfer
to the surroundings, and (3) the sensitivity of the inferential variable
to changes in the feed flow rate. How would the results differ if a new,
more active catalyst were used in the reactor?

ib) Suggest a modification to the control system design in Figure 17.15,
employing an enhancement presented in Part IV, that would provide
better performance for disturbances in T2.

17.12. For the inferential control system with closed-loop analyzer feedback in
Figure 17.5:
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propane product be controlled by adjusting variables in the final dis
t i l l a t i o n c o l u m n ? I f y e s , w h i c h v a r i a b l e s ? Q u e s t i o n s

ib) The same analyzer could measure the amount of butane in the propane
product. Could this variable be controlled by adjusting a manipulated
variable in the distillation column? If yes, which variables(s)?

17.13. The concentration of component A (Ca) is to be controlled in the non
isothermal CSTR in Section 3.6. It is not measured, but the following
measurements are available: F, Cao. To, T, V, Fc, Tcm, and rcout. Pro
pose an inferential variable for this system and discuss its strengths and
weaknesses.


