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1 3 . 1 □ I N T R O D U C T I O N

As we have learned, feedback control has some very good features and can be
applied to many processes using control algorithms like the PID controller. We
certainly anticipate that a process with feedback control will perform better than
one without feedback control, but how well do feedback systems perform? There
are both theoretical and practical reasons for investigating control performance at
this point in the book. First, engineers should be able to predict the performance
of control systems to ensure that all essential objectives, especially safety but also
product quality and profitability, are satisfied. Second, performance estimates can
be used to evaluate potential investments associated with control. Only those con
trol strategies or process changes that provide sufficient benefits beyond their costs,
as predicted by quantitative calculations, should be implemented. Third, an engi
neer should have a clear understanding of how key aspects of process design and
control algorithms contribute to good (or poor) performance. This understanding
will be helpful in designing process equipment, selecting operating conditions, and
choosing control algorithms. Finally, after understanding the strengths and weak
nesses of feedback control, it will be possible to enhance the control approaches
introduced to this point in the book to achieve even better performance. In fact,
Part IV of this book presents enhancements that overcome some of the limitations
covered in this chapter.

Two quantitative methods for evaluating closed-loop control performance are
presented in this chapter. The first is frequency response, which determines the
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response of important variables in the control system to sine forcing of either the
disturbance or the set point. Frequency response is particularly effective in de
termining and displaying the influence of the frequency of an input variable on
control performance. The second quantitative method is simulation, involving nu
merical solution of the equations defining all elements in the system. This method
is effective in giving the entire transient response for important changes in the
forcing functions, which can be any general function. Both of these methods re
quire computations that are easily defined but very time-consuming to perform by
hand. Fortunately, the calculations can be programmed using simple concepts and
executed in a short time using digital computers.

After the two methods have been explained and demonstrated, they are em
ployed to develop further understanding of the factors influencing control per
formance. First, a useful performance bound is provided that defines the best
performance possible through feedback control. Then, important effects of ele
ments in the feedback system are analyzed. In one section the effects of feedback
and disturbance dynamics on performance are clarified. In another section the
effects of control elements, both physical equipment and algorithms, on control
performance are evaluated. The chapter concludes with a table that summarizes
the salient effects of control loop elements on control performance.

13.2 a CONTROL PERFORMANCE

Many measures of control performance are possible, and each is appropriate in
particular circumstances. The important measures are listed here, and the reader
is referred to Chapter 7 to review their meanings.

• Integral error (IAE, ISE, etc.)
• Maximum deviation of controlled variable
• Maximum overshoot of manipulated variable
• Decay ratio
• Rise time
• Settling time
• Standard deviation of controlled and manipulated variables
• Magnitude of the controlled variable in response to a sine disturbance

Two additional factors should be achieved for control performance to be ac
ceptable; generally, they are not difficult to achieve but are included here for com
pleteness of presentation. The first is zero steady-state offset of the controlled
variable from the set point for steplike input changes. For nearly all control sys
tems, zero offset is a desirable feature, and control systems must use a controller
with an integral mode to achieve this objective. An important exception where zero
offset is not required occurs with some level controllers. Level control is addressed
in Chapter 18, where different control performance criteria from those used in this
chapter are introduced.

The second factor is stability. Clearly, we want every control system to be sta
ble; therefore, control algorithms and tuning constants are selected to give stable
performance over a range of operating conditions. It is very important to recog
nize that stability places a limit on the maximum controller gain and, in a sense,



the control system performance. Without this limit, proportional-only controllers
with very high gains might provide tight control of the controlled variable in many
applications.
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In this chapter we will confine our discussion to control systems that require zero
offset and to controller tuning constant values that provide good performance over
a reasonable range of operating conditions.

Also, we recognize that no general boundary exists between good and poor
process performance. A maximum controlled-variable deviation of 5°C may be
totally unacceptable in one case and result in essentially no detriment to operation
in another case. In this chapter we identify the key factors influencing control per
formance and develop quantitative methods for predicting performance measures
that can be applied to a wide range of processes; the desired value or limit for each
measure will depend on the particular process being considered. In evaluating
control performance, we will use the following definition.

Control performance is the ability of a control system to achieve the desired dy
namic responses, as indicated by the control performance measures, over an expected
range of operating conditions.

This definition of performance includes both set point changes and disturbances.
The phrase "over an expected range of operating conditions" refers to the fact
that we never have perfect information on the process dynamics or disturbances.
Differences between model and plant are inevitable, whether the models were
derived analytically from first principles or were developed from empirical data
such as the process reaction curve. In addition, differences occur because the
plant dynamics change with process operating conditions (e.g., feed flow rate and
catalyst activity). Since any model we use has some error, the control system
must function "well" over an expected range of errors between the real plant and
our expectation, or model, of the plant. The expected range of conditions can be
estimated from our knowledge of the manner in which the plant is being operated
(values of feed flow, reactor conversion, and so forth).

The ability of a control system to function as the plant dynamics change is
sometimes referred to as robust control. However, throughout this book we will
consider performance to include this factor implicitly without expressly including
the word robust every time. To reiterate, we must always consider our lack of perfect
models and changing process dynamics when analyzing control performance.

It is important to emphasize that the performance of a control system depends
on all elements of the system: the process, the sensor, the final element, and the
controller. Thus, all elements are included in the quantitative methods described
in the next two sections, and important effects of these elements on performance
are explored further in subsequent sections.
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13.3 □ CONTROL PERFORMANCE VIA CLOSED-LOOP
FREQUENCY RESPONSE

Continuously operating plants experience frequent, essentially continuous, dis
turbances, so predicting the control system performance for this situation is very
important. The approach introduced here is very general and can be applied to any
linear plant, not just first-order-with-dead-time, and any linear control algorithm.
Also, it provides great insight into the influence of the frequency of the input (set
point and disturbance) changes on the effectiveness of feedback control.

The approach is based on the frequency response methods introduced in pre
vious chapters. Frequency response calculates the system output in response to a
sine input; we will use this approach in evaluating control system performance by
assuming that the input variable—set point change or disturbance—is a sine func
tion. While this is never exactly true, often the disturbance is periodic and behaves
approximately like a sine. Also, a more complex disturbance can often be well
represented by a combination of sines (e.g., Kraniauskas, 1992); thus, frequency
response gives insight into how various frequency components in a more complex
input affect performance.

The control performance measure in this section is the amplitude ratio of the
controlled variable, which can be considered the deviation from set point because
the transfer function equations are in deviation variables. The frequency response
of a stable, linear control system can be calculated by replacing the Laplace variable
s with jco in its transfer function. The resulting expressions describe the amplitude
ratio and phase angle of the controlled variable after a long enough time that the
nonperiodic contribution to the solution is negligible. The control system in Figure
13.1 is the basis for the analysis, and this system has the following transfer function
in response to a disturbance:

C V j s ) = G r f ( £ )
Dis) l + Gp(s)Gds)Gc(s)Gds)

It is helpful to consider the amplitude ratio of the controlled variable to the
disturbance in equation (13.1), which can be expressed as the product of two
factors:

\CV(jco)\
\D(jco)\ -[\Gd(jco)\

1
1 + Gp(jco)Gdjco)Gc(jco)Gs(jco) (13.2)

Dis)- Gdis)

SPis) -K>—*- Gcis)
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Gvis) GJs)
CVis)

Gsis)

FIGURE 13.1
Block diagram of feedback control system.



The first factor of the amplitude ratio is the numerator, which contains the open-
loop process disturbance model. The second factor is the contribution from the
feedback control system. The frequency responses of the factors are given in Figure
13.2a and b and are referred to in analyzing the frequency response of the closed-
loop system. The results in Figure 13.2 are for the (arbitrary) system

Gpis)Gds)Gds) =
1.0*-155

Gr = 0.60 (1+i) Gd =
0.48

20s+ \ " " ' " V " " 30sJ " 20s + 1
When interpreting these plots, it is helpful to remember that (unachievable)

perfect control would result in no controlled-variable deviation for all frequencies;
in other words, the output (CV) amplitude would be zero for all frequencies. The
closed-loop system is first considered at limits of very low and very high frequency.
This analysis makes use of equation (13.2) and Figure 13.2a and b. For disturbances
with a very low frequency, the first factor (i.e., the process through which the
disturbance travels) does not attenuate the disturbance; thus, its magnitude is large.
(The disturbance dynamics are assumed similar to the feedback dynamics for
this example.) However, the relatively fast feedback control loop will effectively
attenuate a disturbance in this frequency range; thus, the magnitude of the feedback
factor is small. The control system response is the product of the two magnitudes;
therefore, the control system provides good performance at input frequencies much
lower than the critical frequency, because of feedback control. Note that the integral
mode of the PI controller is especially effective in rejecting slow disturbances and
that in general, feedback control systems provide good control performance at very
low disturbance frequencies.

For disturbances at the other extreme of very high frequency, the feedback
controller is not effective, because the disturbance is faster than the control loop
can respond. In this case the magnitude of the second factor is nearly 1. However,
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FIGURE 13.2

Amplitude ratios in equation (13.2): ia) numerator; ib) denominator.
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the disturbance process, as long as it consists of first- or higher-order time constants
(and not simply gains and dead times), filters the high-frequency disturbance. This
filter results in a small magnitude of \Gdijco)\, reducing the magnitude of the
controlled variable substantially. Therefore, the feedback control system provides
good control performance for very high frequencies as well. Note that the good
performance is not due to feedback control but rather to the disturbance time
constant(s), which in this range is much larger than the disturbance period (i.e.,
l f rd<£o>d)>

For intermediate frequencies, a harmonic or resonant peak occurs. This peak
represents the most difficult frequencies for the feedback control system. In fact, for
some systems the control system can perform worse than the same plant without
control, indicating that disturbances can be slightly amplified by the feedback
control loop around the harmonic frequency.

The general shape of the closed-loop frequency response to a disturbance
for most feedback controller systems is similar to the curve in Figure 13.3. It is
important that the engineer understand the reasons for the behavior in the low-,
intermediate-, and high-frequency regions. Many disturbances in process plants
have low frequencies, because they result from the changing operation of slowly re
sponding systems such as the composition of flows from large upstream feed tanks.
Many very fast disturbances occur due to imperfect mixing and high-frequency
pressure disturbances. For both disturbances, feedback control performance tends
to be good. However, many disturbances also occur around the critical frequency

Input
DO) W
Output
CV(/) <vw

\Gdija>)\
1 + GpiJ(o) GviJ(o) Gcij<o) Gsija>) |

1(T7 IO-6 IO-5 IO-4 IO-3 IO-2 10_1 10° 101 102
Frequency, (o

FIGURE 13.3

Frequency response of feedback-controlled variable to disturbance.



of a feedback loop, because oscillations caused by an integrated process under
feedback control tend to be in the same frequency range.

Disturbances around the closed-loop resonant frequency are essentially uncontrol
lable with any single-loop feedback controller, and therefore such disturbances
should be prevented by changes to the process design or attenuated using enhance
ments discussed in Part IV.
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EXAMPLE 13.1.
The plants presented in Figure 13.4 are subject to periodic disturbances. All plants
have the same equipment structure, but they have different equipment sizes. They
can all be modelled as first-order-with-dead-time processes, and the dynamics of
the sensor and valve are negligible. Determine the control performance in re
sponse to a disturbance (£>) possible with the four designs and rank them ac
cording to the amplitude ratios achieved by PI controllers.

The solution to the example involves calculating the closed-loop frequency
response for each case. The calculations are based on equation (13.2), with the
appropriate transfer functions for the individual elements—in this case, a first-
order-with-dead-time process, a first-order disturbance, and a PI controller. The
calculation of the amplitude ratio follows the same procedure used in Chapter
10, where s is replaced by jco in the transfer function; then the magnitude of the
complex expression is determined. The results of the algebraic manipulations for
this example are given in equation (13.3); recall that the frequency response could
also be evaluated using computer methods not requiring these extensive algebraic
manipulations.

Amplitude ratio = \Gdijco)\
1

1 + Gcijco)Gpijco) (13.3)

r-G
% *■

do

Case KP e T y

A 1.0 1.0 1.0 1.0
B 1.0 4.0 4.0 1.0
C 1.0 0.5 1.5 1.0
D 0.1 0.5 1.5 1.0

FIGURE 13.4
Schematic of process with model parameters for

Example 13.1.
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where \Gdjco)\ = —&
yj\+(o2z2d

1

with Kd = 1

y/jAC + BD)2 + jBC + AD)2
C2 + D21 + Gdjco)Gpijco)

A = -TiZpco2 B = T,co
C = KpKc[cos i-9co) - T/wsin i~9co)] - TiZpco2
D = KpKc[sm i-9co) + T{co cos i-9co)] + Ttco

In each case, the PI controller has to be tuned; the tuning for this example is
given below based on the Ciancone correlations in Figure 9.9a and b.

Case 0/iO + z) KcKp T,/i$ + z) Ke 1/

A 0.5 0.85 0.75 0.85 1.5
B 0.5 0.85 0.75 0.85 6.0
C 0.25 1.70 0.65 1.70 1.3
D 0.25 1.70 0.65 17.0 1.3

The best control performance has the smallest amplitude ratio (i.e., the smallest
deviation from set point). These calculations have been performed, and the results
are given in Figure 13.5, which shows that the best performance is possible with
designs C and D. The next best is case A, and the worst is case B.

Since the disturbance transfer function is the same for all cases, the processes
with the longest dead time and the longest dead time plus time constant in the
feedback path are more difficult to control; this explains why case B has the poorest

10' e—i i i nun—ii i i i mi—ii i i i mi—I I I I I i m

io-3
IO"2

FIGURE 13.5
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IO2

Closed-loop frequency responses for the cases in
Example 13.1.



performance and why case A is not as good as C and D. Note that processes C and
D have the same dynamics and differ only in their gains. Thus, the controller gain
can be selected to achieve the same KPKC and the same control performance.
(This result assumes that the manipulated variable can be adjusted over a larger
range for the process with the smaller process gain.) In addition to finding the best
process, we have identified a region of disturbance frequency for which feedback
control will not function well. Process changes or control enhancements would
be in order if disturbances with large magnitudes were expected to occur in this
frequency range.
tt̂ mm&Mmmimm:, mmmm®Mmm!®mmmmmmMM^^

EXAMPLE 13.2.
Normal plant disturbances have many causes with different frequencies. This ex
ample presents a simple case of two disturbances. As depicted in Figure 13.6,
the input disturbance is the sum of two sine waves that have the same phase and
have the amplitudes and frequencies given in the following table. The input dis
turbances are not measured, but sample open-loop dynamic data of the output
variable [i.e., Gds)Dis)] are given in Figure 13.7a. What is the magnitude of the
sine wave of the controlled variable when PI feedback control is implemented for
the same disturbance?
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Input No. 1 Input No. 2
Frequency (rad/min)
Amplitude

0 . 0 1 0 0 . 2 0
1 . 0 0 . 5 0

The first step in the solution is to calculate the closed-loop frequency response
for this process with PI control. The process is first-order-with-dead-time, and the
calculations employ equation (13.3) with the following parameters:

7^ = 1.0 9 = 1.0 Gdis) = \r = 2.0

Kc = \.0 Tf =2.0
The amplitude ratio of each input considered individually can be determined as

s?is) —•O"*'_T

Input No. 1

Input No. 2 ^K/KT*

H) }+2s

I
+1 CVis)
<J

FIGURE 13.6
Schematic showing the system and disturbances considered in Example 13.2.
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>

2500

2500

FIGURE 13.7

Results for Example 13.2: (a) disturbance without control;
ib) closed-loop dynamic response with PI control.

shown in Figure 13.8. The lower-frequency disturbance (input no. 1) has a very
small amplitude ratio. Thus, the control performance for this part of the disturbance
is good. The amplitude ratio for the higher-frequency input (input no. 2) is not small
and is about 0.50, because it is in the region of the resonant frequency. Therefore,
input No. 2 contributes most of the deviation for the closed-loop feedback control
system.

This analysis can be compared with the dynamic response of the closed-loop
control system with the two sine disturbances given in Figure 13.7b. The response
shows almost no effect of the slow sine disturbance and a significant effect from
the faster sine disturbance. The magnitude of the closed-loop simulation, about
0.25, is the same as the prediction from the frequency response analysis, 0.5 x 0.5.
We can conclude from this example that the frequency response method provides
valuable insight into which disturbance frequencies will and will not be attenuated
significantly by feedback control.
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FIGURE 13.8

Closed-loop amplitude ratio for Example 13.2.
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Most process control systems are primarily for disturbance response, but some
have frequent changes to their set points. The frequency response approach devel
oped for disturbance performance analysis can be extended to set point response
to determine how well the control system can follow, or track, its set point. The
following transfer function relates the controlled variable to the set point for the
system in Figure 13.1:

CVjs) = Gpis)Gds)Gcjs)
SPis) \+Gpis)Gds)Gds)Gds)

The amplitude ratio of this transfer function can be calculated using standard pro
cedures (setting s = jco) and plotted versus frequency of the set point variation.
Perfect control would maintain the controlled variable exactly equal to the set
point; in other words, the amplitude ratio would be equal to one (1.0) for all fre
quencies. Very good control performance is achieved for very low frequencies,
when the feedback control system has time to respond to slow set point change. As
the frequency increases, the control performance becomes poorer, because the set
point variations become too fast for the feedback control system to track closely.
Again, a resonant peak can occur at intermediate frequencies.
EXAMPLE 13.3.
Calculate the set point frequency response for the plant in Example 13.1, case C.

The transfer functions of the process and controller are given in Example 13.1.
The result of calculating the amplitude ratio of equation (13.4) is given in Figure
13.9. As shown in the figure, the control system would provide good set point
tracking (i.e., an amplitude ratio close to 1.0) for a large range of frequencies.
The frequency range for which the amplitude ratio responds satisfactorily is often
referred to as the system bandwidth; taking a typical criterion that the amplitude
ratio of 1.0 to 0.707 is acceptable, the bandwidth of this system is frequencies
from 0.0 to about 3 rad/time.

yMmiMmmk^^mMmmm^mmaii^
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FIGURE 13.9

Closed-loop frequency response for the set point response in
Example 133.

The calculation of the frequency response for the closed-loop system is per
formed by applying the same principles as for open-loop systems. However, the
calculations are much more complex. The frequency response for closed-loop sys
tems requires that the transfer function be solved for the magnitude, and the results
must be derived for each system individually, as was done analytically in equation
(13.3). Clearly, this amount of analytical manipulation could inhibit the application
of the frequency response technique.

In the past, graphical correlations have been used to facilitate the calcula
tions for a limited number of process and controller structures. The Nichols charts
(Edgar and Hougen, 1981) are an example of a graphical correlation approach to
calculate the closed-loop from the open-loop frequency response. These charts are
not included in this book because closed-loop calculations are not now performed
by hand.

Since the advent of inexpensive digital computers, the calculations have been
performed with the assistance of digital computer programs. Most higher-level
languages (e.g., FORTRAN) provide the option for defining variables as complex
and solving for the real and imaginary parts; thus, the computer programming is
straightforward, basically programming equation (13.2) with complex variables.
An extension to the programming approach is to use one of many software packages
that are designed for control system analysis, such as MATLAB™. An example
of a simple MATLAB program to calculate the frequency response in Figure 13.9
is given in Table 13.1. For simple models, the approach in Example 13.1 can be
used, but computer methods are recommended over algebraic manipulation for
closed-loop frequency response calculations.

The frequency response approach presented in this section is a powerful,
general method for predicting control system performance. The method can be
applied to any stable, linear system for which the input can be characterized by a



TABLE 13.1

Example MATLAB™ program to calculate a closed-loop frequency
response
% ** EXAMPLE 13.3 FREQUENCY RESPONSE ***
% this MATLAB M-file calculates and plots for Example 13.3
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% parameters in the linear model
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
kp = 1.0 ; taup = 1.5 ; thetap = 0.5;
kc = 1 .7 ; t i = 1 .3 ;
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% simulation parameters
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
wstart = .0001 ; % the smallest frequency
wend = 100 ; % the h ighes t f r equency
wtimes =800 ; % number of points in frequency range
omega = logspace ( loglO(wstart), loglO(wend), wtimes);
j j = sqr t ( - l ) ; % define the complex var iab le
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% put calculations here
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
for kk = 1:wtimes

s = j j * o m e g a ( k k ) ;
Gp(kk) = kp * exp (- thetap * s) /( ( taup*s +1)) ;
Gc(kk) = kc*(l + 1/ (ti * s) ) ;
G (kk) = Gc(kk)*Gp(kk)/(l + Gc(kk)*Gp(kk));
AR(kk) = abs (G(kk));

end % for cnt
% * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% plot the results in Bode plot
! t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

loglog( omega, AR)
a x i s ( [ - 4 2 - 2 1 ] )
x label ( ' f requency, rad/ t ime ' )
y labe l ( 'ampl i tude ra t io ' )
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dominant sine. The calculations of the amplitude ratio for a closed-loop system are
usually too complex to be performed by hand but are easily performed via digital
computation.

The great strength of frequency response is that it provides a clear indication of
the control performance for an input (disturbance or set point change) at various
frequencies.
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13.4 [l CONTROL PERFORMANCE VIA CLOSED-LOOP
SIMULATION
Solution of the time-domain equations defining the dynamic behavior of the sys
tem is another valuable method for evaluating the expected control performance
of a design. Unfortunately, the differential and algebraic equations for a realistic
control system are usually too complex to solve analytically, although that would
be preferred so that analytical performance relationships could be determined.
However, numerical solution of the algebraic and differential equations is possi
ble and usually provides an excellent approximation to the behavior of the exact
equations.

One reason for using simulation is that control performance specifications
are defined in the time domain. The comparison of the predicted performance
to the specifications often requires the entire dynamic response—the variables
over the entire transient response—to ensure proper dynamic behavior. Thus, the
solution to the complete model is required. Also, the engineer likes to see the entire
transient response to evaluate all factors, such as maximum deviation, decay ratio,
and settling time. The simulation approach is particularly useful in determining the
response of a system to a worst-case disturbance. This largest expected disturbance
can be introduced, and the resulting response will indicate whether or not all process
variables can be maintained within their specified limits.

Numerical methods used to solve ordinary differential equations were de
scribed briefly in Chapter 3. Note that equations for all elements in the system—
process, instrumentation, and controller—must be solved simultaneously. Also,
since the solution is numerical, there is no requirement to linearize the equations,
although insight from the analysis of linear models is always helpful. Simulation
methods have been used to prepare most of the closed-loop dynamic responses in
figures for this book.
EXAMPLE 13.4.
Determine the dynamic response of the three-tank mixing process defined in Ex
ample 7.2 under PID control to a disturbance in the concentration in stream B of
+0.8%.

This is the case considered in Example 9.2, in which the PID tuning was first
determined from a process reaction curve. The dynamic response of the closed-
loop control system was then determined by solving the algebraic and differential
equations describing the system, along with the algorithm for the feedback con
troller. The following equations summarize the model:

E = SP - *A3

v = Kc\E + ±rj\(t')dt'-Td dt + 50

FA = 0.0028u
Fb(xA)b + FdxA)A

(13.5)

XAQ = FB + FA

Vr
dxA/

dt
= (FA + FB)(xAi-i - xAi) for / = 1,3

The PID controller can be formulated for digital implementation as described
in Chapter 11. Also, the differential equations can be solved by many methods;
here they are formulated in the discrete manner using the Euler integration method.



Both the process and the controller are executed at the period At.

E„ = SP„ — (xA3)n

(v)n = (»)„_, + Kc\En - £„_, + ^- + j; [-(xA3)n + 2Cka3)„_, - (*A,)„_2]}

(FA)n=0.002S(v)n
(13.6)

, v [FB(xA)B + FdxA)A~{ x A o ) „ = — — —
L F B + F A J „

A t c r - _ l r . )
- [(xAi-1)„ - (xAi)„] for / = 1, 3
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C*A/)n+l = ixAi)n +
Vi

The initial conditions are (jcA()0 = 3.0% A for / = 0,3 and (u)0 = 50% open. The
controller tuning constants are Kc = 30, 7) = 11, and Td = 0.8. The disturbance
was a step in ixA)B from its initial value of 1.0 to 1.8 at time 20. The execution
period was selected to be small relative to the time constants of the process,
0.1 minute. The result of executing the equations (13.6) recursively is the entire
transient response. The manipulated and controlled variables are plotted in the
adjacent figure. Note that the numerical simulation approach is not limited to linear
systems. In fact, this example involves several nonlinearities, e.g., Fajca.

The simulation method is not restricted to simple input forcing functions,
and this flexibility is very useful in estimating likely improvements in control
performance. As demonstrated in the previous example, the control performance
can be determined based on a model of the feedback process and a model of the
disturbance. If the disturbance is a complicated function, a representative sample
of the effect of the disturbance on the variable to be controlled can be used as a
"model" of the disturbance. The effect of the disturbance(s) can be obtained by
collecting open-loop data of the variable to be controlled as typical variabilities in
plant operation occur.
EXAMPLE 13.5.
PI control is to be applied to the plant with feedback dynamics characterized by
a dead time and single time constant. In the plant an undesirable feed compo
nent is reacted to a benign effluent component. The outlet concentration is to be
controlled by adjusting the feed preheat. The control objective is to maintain the
outlet concentration just below its maximum value. Too low a concentration leads
to costly side reactions and byproducts; thus, the goal is to reduce the variance.
The model, determined by empirical identification, and the controller tuning are
as follows:

GPis)Gds)Gis) =
ACjs) \.0e
vis)

- 2 5

\+2s G' = ,0(I + 237) <13'7)

A sample of representative dynamic data of the reactor effluent without control
is presented in Figure 13.10a. Note that some of the variation is of low frequency;
feedback control would be expected to be successful in attenuating these low-
frequency components. Also, some of the variation is relatively high-frequency,
which, we expect, would be difficult to reduce with feedback control.

To predict the performance of the control system, a simulation can be per
formed using the plant model with the sample disturbance data. This approach

Control Performance
via Closed-Loop

Simulation

100 120 140 160 180 200
Time
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FIGURE 13.10

Reactor outlet concentration, Example 13.5: (a) effect of
disturbance without control; ib) dynamic response with
feedback control.

is shown schematically in Figure 13.11, where the digital simulation would in
troduce the disturbance data collected from the process, Figure 13.10a, as the
forcing function. Naturally, the controller calculation, here a proportional-integral
algorithm, receives the controlled process output, which is the sum of the effects
from the manipulated variable and the disturbance. The results of the simulation
are given in Figure 13.10b. The variability of the controlled variable, measured by
standard deviation, has been reduced substantially by feedback control. Analysis
of a larger set of data than shown in the figure, which gives a more reliable indica
tion of performance, shows that the standard deviation is reduced by a factor of
5. As expected, the high-frequency components are not substantially reduced by
the feedback control system. Because of the smaller variation, the average value
of the concentration (i.e., the controller set point) could be changed to realize the
benefits from improved control performance.
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FIGURE 13.11

Schematic of the calculation method for predicting control performance with a
complex disturbance model by a simulation method.

This example clearly demonstrates the improvement possible with feedback
control and provides a simple, simulation-based method for estimating control
performance. The method requires a process model, a controller equation, and
a sample of the output variable without control; it provides a prediction of the
standard deviation of the manipulated and controlled variables. It can be used in
conjunction with the benefits calculations to estimate control benefits quantita
tively, as shown in Figure 13.11.

The material in this section has demonstrated that:
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Dynamic simulation via numerical solution of the system equations provides a man
ner for determining the dynamic performance of a closed-loop process control sys
tem. The approach can (1) provide a solution for nonlinear as well as linear systems;
(2) consider any input forcing functions; and (3) provide detailed information on all
variables throughout the transient response.

Frequency response and dynamic simulation, provide methods required to analyze
control systems quantitatively. These methods are applied in the next sections to
develop understanding of how specific aspects of process dynamics and the PID
controller influence performance.

13.5 □ PROCESS FACTORS INFLUENCING SINGLE-LOOP
CONTROL PERFORMANCE
Because the process iGpis) and Gdis)), instrumentation iGds) and Gsis)), and
the controller (Gc(s)) appear in the closed-loop transfer function in equation (13.1),
all elements in the feedback system influence its dynamic response and control
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performance. It is tempting to believe that a cleverly designed controller algorithm
can compensate for a difficult process; however, the process imposes limitations on
the achievable feedback control performance, regardless of the feedback algorithm
used. An understanding of the effects of process dynamics on control performance
enables us to design plants that are easier to control, recognize limits to the perfor
mance of single-loop feedback control, and design enhancements. The next topic
establishes a bound on the best achievable feedback control performance that gives
valuable insight into the effects of process dynamics.

A Bound on Achievable Performance
The first topic introduced in this section is the performance bound (i.e., the best
achievable performance) for a feedback system. The best performance is explained
with reference to the process shown in Figure 13.4, where the control system is
subjected to a step change disturbance. (Note that this concept is applicable to
more general processes than Figure 13.4.) The dynamic responses of the controlled
and manipulated variables are graphed versus time in Figure 13.12, and several
important features of the response are highlighted. First, note that the effect of
the feedback adjustment has no influence on the controlled variable for a period
of time equal to the dead time in the feedback loop. Therefore, the integral error
and maximum deviation shown in Figure 13.12 cannot be reduced lower than
the open-loop response for time from zero (when the disturbance first affects the
controlled variable) to the dead time. For the special case of a step disturbance
with magnitude AD and a first-order disturbance transfer function with gain Kd
and time constant xd, the limiting integral error and maximum deviation can be
simply evaluated by the equations

IAEr

'max I mm

E = Kd(\ - e(-t/Xd))AD for 0 < t < 6

= / \E\dt
Jo

= \KdAD\ / \(\-e-VTd))\dt
Jo

= \KdAD\[6 + xd(e-e^-l)]

= \KdAD\ (1 - *-<*/*>)

(13.8)

(13.9)

(13.10)

IAEmin represents the minimum IAE possible, and |£maxlmin represents the mini
mum value possible for the maximum deviation for a feedback system with dead
time 6, a step disturbance, and a disturbance time constant of xd. No single-loop
feedback controller can reduce the values further. As shown in the figure, these
values provide a useful bound with which to evaluate control performance. The
important conclusion from this discussion is that

The dead time in the feedback path is the facet of the process that usually limits the
control performance.
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FIGURE 13.12

Typical dynamic response for a feedback control system.
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The theoretical best achievable control performance cannot usually be realized
with a PID control algorithm, although the PID often provides entirely satisfac
tory performance. Methods exist for deriving the control algorithms giving the
theoretical best or "optimal" control, with optimal defined several ways, such as
minimum integral of error squared (Newton, Gould, and Kaiser, 1957; Astrom and
Wittenmark, 1984). It is important to recognize that these optimal controllers can
result in excessive variation in the manipulated variable, and their performance can
be very sensitive to model errors. Therefore, the "optimal" algorithms are not often
applied in the process industries, although their concepts are useful in determining
the achievable performance bounds in equations (13.9) and (13.10).

EXAMPLE 13.6.
The potential designs shown in Figure 13.4, plus one additional, have been pro
posed for a plant. It is expected that all designs have nearly the same capital
cost. The major disturbance is an occasional step with magnitude of 2.5 units.
Which of the designs will have the best control performance? The dynamic model
parameters are summarized in the following table.

Feedback process Disturbance process

Case Kp e T xd Kd
A 1.0 1.0 1.0 1.0 2.0
B 1.0 4.0 4.0 1.0 2.0
C 1.0 0.5 1.5 1.0 2.0
D 0.1 0.5 1.5 1.0 2.0
E 1.0 0.5 1.5 4.0 2.0

The feedback control systems could be simulated to determine the perfor
mance for each. The selection of the best performing design would be straightfor
ward, but the total effort would be substantial. In this example, the limiting (best
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possible) performances will be evaluated using equations (13.9) and (13.10) as a
basis for selecting the best design. The results of the calculations are given in the
following table.

Case

Minimum IAE
equation (13.9)
(smallest is best)

Minimum |£maxl
equation (13.10)
(smallest is best)

Ranking
(1 = best)

A 1.85 3.15 4
B 15.10 4.90 5
C 0.55 1.95 2 (tied)
D 0.55 1.95 2 (tied)
E 0.15 0.59 1

The rankings of the original four cases agree with the conclusions in Example
13.1. All of these have the same disturbance dynamics, so that the performance
ranking depends entirely on the feedback dynamics. Since cases C and D have
the smallest dead time and fraction dead time, they provide the best performance
from among the original cases A to D. Case E has the same feedback dynamics
as cases C and D, but it has slower disturbance dynamics. Slower disturbance dy
namics are favorable, because feedback compensation has more time to correct
for the disturbance before a large deviation from set point occurs. The performance
measures indicate that case E should give substantially better performance than
the other designs for this step disturbance. Simulations with realistic PID con
troller tuning confirm these conclusions, which are based on the theoretically best
possible performance.

h J
D

f c ®

EXAMPLE 13.7.
As a result of Example 13.6, we have selected the case E process design. The
customers of the product have stated that they will not accept the product if it ever
deviates more that ± 0.40 units from the desired value, i.e., the controller set point.
How does our design measure up to this demand?

The results table in Example 13.6 shows that the smallest possible maximum
deviation is 0.59, which is larger than the maximum allowable violation. Since this
is the best possible performance—with feedback control—we know that we should
not investigate alternative PID tuning or alternative feedback control calculations.
We know that we must change the structure of the problem. Possible solutions
include (1) reducing the magnitude of the disturbance in an upstream process
(always a good concept), (2) making the feedback process faster, (3) making
the disturbance process slower, or (4) inventing a control approach different from
feedback. In this example, we will investigate (3) by modifying the disturbance
process. (In the next few chapters, we will develop new control approaches that
might be less expensive.)

The simplest change to the disturbance process would be an increase in
the volume of the mixing tank that would increase the disturbance time constant.
From equation (13.10), the minimum disturbance time constant to achieve the
required performance (minimum lE^ < 0.40) is about 6.0. However, this cal
culation assumes the best possible feedback compensation; therefore, a larger
disturbance tank volume would be expected for realistic feedback control. A few
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FIGURE 13.13
Disturbance response of the case E process in Example 13.7 modified

to have zd = 10.

simulations with PI control and Ciancone tuning (Kc = 1.7 and T, = 1.3) found that
a disturbance time constant of 10 was just large enough to achieve the desired
control performance. The dynamic response to the disturbance for a disturbance
time constant of 10 is shown in Figure 13.13. As expected, the behavior of the
controlled variable with a realistic PI controller is not as good as with the optimal
controller; as a result, the disturbance time constant had to be increased substan
tially to obtain the desired performance. The wise engineer would evaluate the
likely errors in the plant models and further increase the disturbance mixing tank
volume to account for these uncertainties.

m^m :̂m¥m&mmmmMmmmmmM
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The preceding discussion and examples demonstrate that both feedback and distur
bance process dynamics influence control performance. Fast feedback dynamics and
slow disturbance dynamics favor good performance. Understanding this difference
is crucial when designing plants with favorable dynamic behavior.

The Effect of Inverse Response

Inverse response is an important characteristic of the feedback process dynamics
that, when it exists, has a major effect on control performance. The reasons why
inverse responses occur are explained in Section 5.4 on parallel systems, and
some process systems that have parallel structures are presented and modelled
in Appendix I. The process considered here is modelled in Example 1.2. In that
example, the parallel process structure resulted in the concentration first increasing,
then decreasing in response to a step increase in the solvent flow rate. (The reader
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may want to review this example before proceeding.) Clearly, such a process is
difficult to control, because the initial response of the controlled variable is in the
"wrong" direction. The initial inverse response imposes a limit to the achievable
control performance in a way similar to dead time.

EXAMPLE 13.8.
The inverse response process, the reactor in Example 1.2, is shown in Figure 13.14
with the proposed feedback control system. Determine the control performance
for this system in response to a step change in the set point of a PI controller.

The model for this process, linearized about the initial steady state, is repeated
here; however, this model is not exact for the transient considered, because the
gain and time constants depend on the flow of solvent, which changes through
the transient:

GPis) =
-1.66(-8.0$-H)

(8.25* + l)2 (13.11)

The tuning for the PI controller was determined by trial and error to be Kc =
-0.45 m3/min(mole/m3) and Tt = 13.0 min, which resulted in the transient response
in Figure 13.15. This transient was evaluated by a numerical solution of the nonlin
ear differential equations. The control performance is less than ideal, because the
initial response of the controlled variable is inverse to the change in the set point.
However, the response is stable, returns to the set point, and is "well behaved"
(i.e., not unduly oscillatory or slow to return to the set point).

It is important torecognize that this second-order process without dead time
cannot be controlled tightly, because of the inverse response, regardless
of the feedback control algorithm.

Again, we see the influence of feedback dynamics on control performance.

FIGURE 13.14
Feedback control design for Example 13.8.
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FIGURE 13.15

Closed-loop response of the inverse response process in Example 13.8.

Model Requirements for Predicting Control Performance

Throughout this book, we have monitored the effects of modelling errors on de
sign decisions such as tuning and on the resulting control performance. Here the
effects of modelling errors on the accuracy of control performance predictions
are considered. Two linear models for the three-tank mixing process have been
developed; one involves a third-order system, and the other involves a first-order-
with-dead-time approximation. How well does the performance predicted using
the approximate model compare with the performance using the "exact" third-
order model? To answer the question for this example, the closed-loop frequency
responses have been calculated for both cases. The controller is a PI algorithm
with the tuning constants from Example 9.2 (with the small derivative time set to
zero). The closed-loop transfer functions for the two cases are as follows:
Exact third-order model.

CVjs)
Dis)

1
i5s + l)3

0039 „„, + (57TIF30

Approximate first-order-with-dead-time model.
le-5.5s

CVis)

( ' ♦ i l O

(13.12)

lA0" l̂nAI
A

tr lA2

I A A 3l*lir
(10.5*+ 1)

Dis) ,-5.5s
1 + 0.039

(10.5s+ 1)
■30 (-ib)

(13.13)
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The results of the analysis are plotted in Figure 13.16. The approximate first-
order-with-dead-time model represents the system with sufficient accuracy to pre
dict the control performance, especially for the low-frequency disturbances, which
is the range for which feedback control is designed and effective. The predictions
differ in the high-frequency range, but they both predict very good disturbance
attenuation. The approximate model leads to some error in the region of the res
onance peak; however, both models identify the proper resonance frequency and
properly predict that feedback is not effective in this frequency region.

The results of this example on control performance, along with Examples 9.2
and 9.3 on tuning and Example 10.17 on stability analysis, lead to a very important
conclusion:

An approximate first-order-with-dead-time model typically provides sufficient ac
curacy for single-loop control tuning and performance analysis when the open-loop
process has an overdamped, sigmoidally shaped response between the manipulated
and controlled variables.

Since many processes have such well-behaved dynamic responses, the first-order-
with-dead-time models are used frequently in the process industries.

The topics in this section demonstrate some key limitations imposed on control
performance by process dynamics and provide some quantitative estimates of how
various process parameters affect performance. From these results, it becomes clear
that many deficiencies in control performance cannot be corrected by improving
the single-loop control algorithm or tuning. Finally, the sensitivity of control design
methods to modelling errors has been analyzed, and the results in this section, in
conjunction with previous chapters, confirm the usefulness of approximate models.

io-3 io-2 io-1 10°
Frequency (rad/min)

FIGURE 13.16

102

Comparison of closed-loop frequency response for (a) exact
third-order model, equation (13.12), and (b) approximate
process model, equation (13.13).
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The goal of the control instrumentation and algorithm is to achieve, as closely as
is practically possible, the best control performance (for the controlled and ma
nipulated variables) for the existing process dynamics. The effect of controller
algorithm and tuning constants on the system's stability has been covered exten
sively in Chapters 9 and 10 and will not be repeated here. Suffice it to say that
the controller tuning is selected to provide a compromise that gives acceptable be
havior over a range of process dynamics. Several other important control system
factors are discussed in this section.
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Manipulated-Var iab le Behavior
As emphasized in Chapter 9, the behavior of the manipulated variable is also
considered when evaluating control system performance. The effect of feedback
control can be determined from the block diagram in Figure 13.1.

MV(j) = -Gd(s)Gds)Gc(s)
Dis) \+Gpis)Gds)Gds)Gds)

The numerator includes the product of the disturbance and controller transfer
functions. As the controller tuning is selected for more aggressive control (i.e., the
gain is increased or integral time decreased), the magnitude of the manipulated-
variable variation is increased. In contrast, maintaining the controlled variable close
to its set point requires aggressive control, as limited by feedback dynamics. Thus,
the tuning is often selected as a compromise of these two concerns, manipulated-
and controlled-variable performance.
EXAMPLE 13.9.
Evaluate the frequency response of the controlled and manipulated variables for
the system in Example 13.1, case C. Evaluate three values of the controller gain
relative to the base case: (a) 75%, (b) 100%, and (c) 125%.

The magnitude of the controlled variable is determined from equation (13.2),
and the magnitude of the manipulated variable is determined from the following
equation:

\DiJco)\
Gdijco)GdJco)Gcijco) (13.15)1 + GpiJco)GviJio)Gcijco)GdJ(o)

The results are given in Figure 13.17a and b. Note that the manipulated-variable
variation at low frequencies is nearly independent of the controller gain, since the
manipulated variable is adjusted slowly, in quasi-steady state, in response to the
disturbance magnitude. However, at higher frequencies a smaller controller gain
results in a smaller manipulated-variable magnitude (variation). As expected, the
smaller controller gain also results in an increased controlled-variable magnitude
(variation).

Sensor and Final Element Dynamics

The dynamics of the final control element, usually but not always a valve, and
the sensor appear in the feedback path. Therefore, they influence the stability and
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FIGURE 13.17

Amplitude ratios for disturbance input for Example 13.9:
(a) of manipulated variable; ib) of controlled variable.

control performance. The closed-loop transfer function, including the instrument
elements, for the system was derived in Chapter 7 and is repeated here:

Gdis)CVjs) =
Dis) \ + Gpis)Gds)Gds)Gds) (13.16)

EXAMPLE 13.10.
Calculate the frequency response of the controlled variable to a disturbance input
for the system in Example 7.1, case A, (a) when the sensor and final element



dynamics are as given in the Example, and ib) when these dynamics are negligible
(i.e., all instrument dead times and time constants are reduced to zero, so that
the only significant dynamics in the feedback path are from the process). For
both cases, the disturbance time constant is 3 minutes. The models for the two
situations are given below.

Example 13.10(a)
1 . 8 4 < r s „ , N 1 . 0

G p i s ) = , _ n „ , , v G d s ) =(0.5* + \)i\.5s + \)(3s + \)i\0s + l)(0.5b + l)(j +1)
Example 13.10(b)

1.84*-'

i3s+\)

GPis) = Gds) =
1.0

( 3 5 + 1 ) " " ( 3 5 + 1 )
The controller tuning has to be determined individually for (a) and (b). The

dynamics can be approximated from the process reaction curves in Figure 7.3a
using the process reaction curve graphical Method II, and the tuning can be cal
culated from the Ciancone correlations.
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Kt e Kc

Example 13.10(a) 1.84 5.5 13.5 0.65 13.3
E x a m p l e 1 3 . 1 0 ( b ) 1 . 8 4 1 . 0 3 0 . 6 5 2 . 8

The results of the frequency response calculations are given in Figure 13.18.
Clearly, the control performance is better for ib), where the instrumentation dy
namics are negligible, because the instrumentation dynamics in (a) are substantial
compared with the process.

10' kin nun—i i i nun—i i i min—i i i nun—i i 111in
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FIGURE 13.18

Amplitude ratio of controlled variable to disturbance for
Example 13.10.
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Recall that the dynamic model determined through empirical identification in
cludes all elements in the feedback path, Gpis)Gds)Gds)Gsis). When the control
system uses the same instrumentation, the identified model provides the informa
tion needed for tuning and control performance assessment.

Digital PID Controllers
The PID algorithm can be implemented in a digital, or discrete manner, where the
calculation is performed periodically. The effects of the execution period on tuning
and control performance were covered in Chapter 11, where At/i6 + x) was iden
tified as the parameter indicating the change from a continuous system. When this
parameter is small, approximately 0.05, the system behavior is similar to that with
a continuous controller; as the parameter increases, the control performance de
grades from that achieved with a continuous controller. The digital control system
can be easily simulated by executing the appropriate number of process simula
tion time steps between successive controller executions to provide an accurate
representation of the process dynamics. The magnitude of the controlled variable
in response to a sine input (i.e., the amplitude ratio of the frequency response) can
be obtained; the calculations require mathematical methods for discrete systems
(z-transforms) covered in this book in Appendix L and in Ogata, 1987.

PID Mode Selection
With detailed analysis of controller tuning and control system performance, it is
possible to discuss the selection of controller modes—proportional, integral, and
derivative—for various applications. Naturally, the appropriate selection depends
on the control objectives. For the vast majority of applications, zero offset is desired
for steplike inputs, and an integral mode is required, as was demonstrated in Chapter
8. A few control strategies do not require zero offset, and proportional-only control
is possible for these. The most common instances are some, but not all, level
controllers, which are described in Chapter 18. Also, the proportional mode is
nearly always used with the integral mode, because control systems with integral-
only controllers tend to have slow, oscillatory dynamic responses.

Therefore, the proportional and integral modes are used for nearly all con
trollers, and the only choice regards the use of the derivative mode. The tuning
correlations in Chapter 9 show that the derivative time (i.e., the contribution from
the derivative mode) should be small for small fraction dead times and increase
as the fraction dead time increases. A rationale for this trend is that the derivative
is a "predictive" mode and that prediction is needed because of the dead time in
the closed-loop system. A quantitative explanation is that the phase lead provided
by the derivative mode allows a higher controller gain and shorter integral time,
resulting in better control performance.

As previously discussed, the derivative mode amplifies high-frequency noise
in the measured variable. If the difference between the noise and process response
frequencies is large, the noise can be attenuated by filtering (see Chapter 12). If this
is not the case, the controller derivative time must be reduced, perhaps to zero, to
observe the limitation on the high-frequency variation of the manipulated variable.



EXAMPLE 13.11.
Select appropriate modes for the PID controller applied to the process shown in
Figure 13.19.
LL1 and LI'S. The feed tanks have periodic, rather than continuous, supply
flows. As a result, their levels must vary with time, and their total volumes must
be large enough to contain the change in inventory accumulated between supply
or delivery flows. Therefore, their levels are not controlled. Level indication allows
plant operating personnel to monitor the levels.

FC-f and FC-2. Flow controllers should maintain the flows at their set points.
The flow process has little dead time and a relatively noisy measurement signal.
Therefore, a PI controller is used. Since the flow process is so fast, the PI is some
times tuned with a small gain and small integral time so that it performs closer to
an integral-only controller. This tuning further reduces the effects of noise.

LC-2. The reactor level influences the residence time and, therefore, the reaction
conversion. The level should be maintained at its set point, but extremely rapid
changes to the manipulated flow are not desirable. A PI controller is used.
TC-1. The reactor temperature is also a key variable in determining the reaction
conversion. The controller would be PID or PI, depending on the fraction dead
time.
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FIGURE 13.19

Schematic of process and controllers considered in Example 13.11.
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TC-2. The flash drum temperature is an important variable in controlling the sep
aration. The controller would be PID or PI, depending on the fraction dead time.

LC-3. There is no incentive to maintain the flash drum level at a specific value
as long as the level remains within its allowed range. Also, flow variation to down
stream units should be small. Therefore, a P-only controller could be used. A PI
controller is also allowable in this case.

PC-f. The pressure of the flash drum is important for safety. It is also important for
product quality, because the pressure affects the components in the flash vapor
and liquid phases. The pressure dynamics should have essentially no dead time.
Therefore, a PI controller is selected.

Selecting the Manipulated Variable
In Chapter 7, five criteria were presented for selecting a manipulated variable from
among several candidates. Here, we apply these criteria using quantitative dynamic
models that improve our ability to evaluate candidate designs and to select the best
manipulated variable.
EXAMPLE 13.12.
Using the following quantitative data, select the manipulated valve for feedback
control for the reactor in Figure 13.20 that will provide better control performance.

Control objective. Maintain the reactant concentration in the reactor at 0.465
mole/m3.

Design problem. Should the feedback controller manipulate vA or vc to achieve
good dynamic performance?
Disturbance. The reactant concentration in the solvent, (Ca)sol. is normally zero
but can increase to 0.463 mole/m3 in a step.

Solvent-
-AO

«XVA

Pure A

FIGURE 13.20

Chemical reactor analyzed in Example 13.12.



Model Information.
1. The reaction is first-order with Arrhenius temperature dependence; -rA =

koe-E'*TCA.
2. The reactor is well mixed, and the volume is constant.
3. Flows depend on the valve openings linearly; Fc = Kvcvc and FA = KAvA.
4. Heat transfer can be modelled similarly to Example 3.7, and heat losses are

negligible.
5. The heat of reaction is zero.

Data. F = 0.085 m3/min, V = 2.1 m3, p = 106 g/m3, Cp = 1 cal/(g°C), T0 = 150°C,
Tcin = 25°C, Fcs = 0.50 m3/min, Cpc = 1 cal/(g°C), pc = IO6 g/m3, *0 = 5.62 x 107
min"1, E/R = (15,000//?)K

Steady-state operation. (Ca)sol = 0, CA0 = 0.965 mol/m3, CA = 0.465 mol/m3,
Ts = 85.4°C, vA = 50%, vc = 50%

A thorough analysis of the potential control designs requires information about
the feedback dynamics. To provide this information, a dynamic model of the system
is formulated, based on the following energy and component material balances.

VpCp^ = FpCp iT0 -T ) -
aF*+x

Fc +
aFi iT-Tcin)

£Pc*-pc

V^£ = F(CA0 - CA) - Vhe-E'RTCAdt
with Fc = Kvcvc, FA = KAvA, and CA0 = itiA)iFA)/F, with p,A molar density in
moles/m3

The equations can be linearized and the following transfer functions can be
derived for the two potential feedback dynamic systems.

CAis) KFC with KFC = 0.00468
vcis) iz\s + \)iz2s + 1)

Z\ = 12.4 min and r2 = 11.7 min

mole/m3
%open

CAjs) _ KFA
vAis) ~ (Tj + 1)

with KFA = 0.0097 mole/m3
%open

r = 12.4 min

Now, the five basic criteria are evaluated for the two potential manipulated
variables.
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Factors Influencing

Control Performance

Feedback with vA -+ CA Feedback with vc -*- C-
1. Causal relationship
2. Automated valve available
3. Fast feedback dynamics

4. Able to compensate for
largest disturbance
5. Adjust the valve without
upsetting the plant

Yes, KFA # 0
Yes
Stable, first-order system with
z = 12.4 min; this is faster!
Yes, when (Ca)Sol = 0.463, uA = 25%

Yes, a tank of reactant is available

Yes, KFC # 0
Yes
Stable, second-order system with
T| = 12.4 and z2 = 11.7 min; this is slower!
Yes, when (Ca)SOl = 0.463, vc = 25%

Yes, cooling water is available
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Based on the analysis, either valve could be used for feedback control be
cause a causal relationship exists, an automated valve is available, and the valve
has sufficient range to compensate for the largest expected disturbance. The
control performance would be best for the system with the fastest feedback dy
namics, therefore, feedback using the reactant valve, vA, is chosen as the better
manipulated variable.

This analysis is confirmed by the dynamic responses of both feedback control
systems in Figure 13.21. The PI controller tunings are

Manipulating vA
Manipulating uc

Kc = 200%/(mole/m3)
Kc = 200%/(mole/m3)

Ti = 3.0 min
7> = 13.0 min

The transient responses show the concentration deviating much less from its set
point when vA is manipulated. This confirms our qualitative analysis. Naturally, the
selection could be influenced by other factors like the cost of energy and potential
side reactions, which are not considered in this example.

Process Design for Control Performance

Various process designs can have identical steady-state conditions but very dif
ferent dynamic behavior. One aspect of dynamic behavior that significantly influ
ences control performance is process self-regulation. Processes with strong self-
regulation tend to be affected less by some disturbances and can be quickly returned
to desired values. The following example shows that fundamental models provide
insight that enables us to design processes with good control performance.
EXAMPLE 13.13.
A stirred-tank heat exchanger was modelled in Example 3.7, and the control
performance of the linearized approximation was evaluated analytically in Exam
ple 8.5. The results indicated reasonably good performance, because the feed
back dynamics Gpis) were first-order. However, the question remains whether the
performance could be improved by simple process modifications. A reasonable
goal would be to change the process so that the feedback dynamic response is
faster and the controlled variable is less sensitive to disturbances. This can be
achieved by increasing the "self-regulatory" nature of the process without control.
For the heat exchanger, the process will be more self-regulatory if the tempera
ture driving force for exchange is small; then, a small increase in the exchanger
fluid temperature due to a feed inlet temperature increase will substantially in
crease the cooling duty. Naturally, the heat exchanger area must be increased to
achieve the same heat transfer rate as in the base case with a smaller temperature
difference.

This concept is applied to the example heat exchanger by increasing the
cooling temperature from the original value of 25°C to 65°C, with a commensurate
increase in the heat exchanger area. The data for this example, which is the same
as the original process in Examples 3.7 and 8.5, are summarized below, and the
modified data are summarized in Table 13.2.

F = 0.085 m3/min V = 2.1 m3 7; = 85.4°C p = IO6 g/m3

Cp = 1 cal/(g°C) r0 = 150°C
Fa = 0.50 m3/ min Cpc = 1 cal/(g°C) pc = IO6 g/m3

The following fundamental nonlinear and linearized models can be derived for a
disturbance in the inlet temperature
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Better performance by
manipulating valve vA

ia)

ib)

* 20

FIGURE 13.21

ia) Dynamic response of the control design in Example 13.12 manipulating vA.
ib) Dynamic response of the control design in Example 13.12 manipulating vc.
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dT_
dtVpCp-- = FpCpiT0-T)

aF»x

Fc +
aF° iT-Tcin)

Gds)Tjs) =
T0is) 1 + Gcis)Gpis)

^Pc^pc

\zds + \J

( # & ) ( ■ ♦ £ )
1 +

(F UA* \ - i

Kp=Wf
\ c 2pcCpc)

The data in Table 13.2 demonstrate that the approximate linear dynamic model
has two significant improvements for the modified process. First, the feedback
time constant is smaller, allowing better feedback performance. Second, the dis
turbance gain is smaller, meaning that the same feed inlet temperature distur
bance has a smaller effect on the process without control because of the stronger
self-regulation. The faster feedback dynamics and smaller disturbance gain in
dicate that the feedback control performance should be better for the modi
fied process. This analysis is confirmed by the results in Figure 13.22, which
shows the temperature responses for the original and modified processes, and
by the results summarized in Table 13.2 on control performance. The tuning was

TABLE 13.2

Data and selected results for Example 13.13

Parameter Or ig inal va lue Modified value Comment
Process data

a (cal/min °C) 1.41 x IO5 5.21 x 105 UA = aFc
Tcin (°C) 25 65
Kp (°C/(m3/min)) -33.9 -19.6
r (min) 11.9 5.93
Kd (°C/°C) 0.52 0.24
zd (min) 11.9 5.93

Controller data
Kc ((m3/min)/°C)
T, (min)

-0.059
0.95

-0.10
0.47

KCKP the same
Ti\z the same

Control system performance
I A E ( ° C m i n ) 5 . 3 1 1 . 2 7
M a x i m u m d e v i a t i o n 0 . 6 6 0 . 3 3
from set point (°C)

Due to smaller Kd and z
Due to smaller Kd
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FIGURE 13.22

Transient responses for Example 13.13.

similar for both systems, adjusted to have the same values for the key dimen
sionless parameters KCKP and Tt/z so that the manipulated-variable behavior is
reasonable (and similar) for both transients. These responses were determined
by numerically integrating the nonlinear differential equations for the process and
controller.

The substantially improved performance for the inlet temperature disturbance
has been accomplished with minor modification to the process. However, it is not
without some negative impact. First, the heat exchanger area and cost have been
increased. Second, the sensitivity of the process performance to disturbances
in the coolant inlet temperature has increased. Thus, the best overall design and
dynamic behavior must be tailored to each specific situation. This example demon
strates that strong self-regulation for key disturbances can reduce controlled vari
able variation and thus, improve control performance.

13.7 a CONCLUSIONS

Two general, quantitative methods—frequency response and dynamic simulation—
have been introduced for analyzing the control performance of feedback control
systems. Each has specific strengths. Frequency response clearly shows the ef
fects of the input frequency on the closed-loop performance, as indicated by the
magnitude of important variables; it is applicable to stable, linear systems. Dy
namic simulation provides detailed information on the performance of variables
throughout a transient for any time-varying input function and can be applied to any
system, linear or nonlinear. Both of these methods require extensive computation
and are implemented using computer calculations.
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The two quantitative analysis methods have been used to develop insights
and generalizations about control performance. Many general conclusions have
been developed about the effects of process and controller parameters on control
performance, and they are summarized in Table 13.3.

TABLE 13.3

Summary of factors affecting single-loop PID controller performance

Key factor Typical parameter Effect on control performance
Feedback Kp
process gain

Feedback 6 + z
process "speed"

6
6 + zFeedback fraction

process dead time
Inverse response Numerator term in

transfer function, izs+\)
with r < 0

Magnitude of \KdAD\
disturbance effect
Disturbance xd
dynamics

cod

6d
Sensor

Filter Tf/iO + x)

Final element

Controller execution At

period
V + z

Controller tuning KcKp

T , T D
i6 + z) i6 + z)

Modelling errors

Limitations on min < MV(0 < max
manipulated
variables

The key factor is the product of the process and controller gains.
For example, a small process gain can be compensated by a large
controller gain. Note that the manipulated variable must have
sufficient range.
Control performance is always better when this term is small.

Control performance is always better when this term is small.

Control performance degrades for large inverse response.

Control performance is always better when this term is small.

Control performance is best when the disturbance is slow (the time
constant is large).
Feedback control is effective for low-frequency disturbances and is
least effective at the resonant frequency.
Disturbance dead time does not influence performance.
Measurement should be accurate. Dynamics should be fast with little
noise.
Attenuates higher-frequency components of measurement. Reduces
the variability of the manipulated variable, but degrades
controlled-variable performance as filter time constant is increased.
Dynamics should be fast without sticking or hysteresis. Range should
be large enough for response to demands.
Control performance is best when this parameter is small. Continuous
PID tuning correlations can be used by modifying the dead time,
6' = 6 + At/2.
These terms are determined from tuning correlations based on control
objectives (see Chapters 7, 9, and 10).

Errors in the process model parameters lead to poorer control
performance and, potentially, instability. Tuning should consider
the estimate of model errors.
Limitations on manipulated variables reduce the operating window
(the range of achievable conditions). An active limit would cause
steady-state offset from the set point.



The analysis of controller modes, tuning, and stability in Chapters 8 through
10 emphasized the feedback process dynamics. In fact, it was demonstrated in
Chapter 10 that the stability of linear systems is independent of the type of input,
so long as it is bounded. In contrast:
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Additional Resources

Control system performance depends on the dynamics of both the feedback and the
disturbance processes and depends critically on the frequency and magnitude of the
disturbance.

Although generally giving good performance, the PID controller does not
provide the best performance in all cases. The performance of a single-loop PID
control system can be improved in some cases by using additional measurements,
modified PID algorithms, or entirely new feedback algorithms. Some of the most
successful enhancements for single-loop control are described in Part IV of this
book.
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Control performance depends on all elements in the feedback loop and the distur
bance path. The following questions require you to (1) apply general principles to
evaluate designs and (2) apply quantitative analysis to answer analytical or numerical
questions.

QUESTIONS
13.1. The mixing process in Figure Q13.1 is to be analyzed in this question. The

concentration at the outlet is controlled by adjusting a mixing stream at the
inlet of three tanks. The main disturbance is the concentration of a stream
flowing through a long pipe and a single stirred tank. Assume that in the
base case the feedback PI controller is well tuned. For each of the following
changes id) through (f) from the base case answer the following questions
and explain your answer,
(i) How should the two tuning constants be changed (increased, decreased,

or unchanged) to maintain good control performance?
(ii) After the tuning has been adjusted, when necessary, how would the

control performance, as measured by maximum deviation of the con
trolled variable in response to a step disturbance, differ from the base
case (larger, smaller, same value)? Hint: It would help to identify the
feedback and disturbance paths, which elements are in each, and how
each is affected by the changes considered.
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Process changes (considered individually)
id) The volume of each of the three tanks, V, is increased by 50%.
ib) The volume of the single tank, Vd, is increased by 50%.
ic) The initial operating condition (controller set point) is increased from

1 % to 2% of A in the product.
id) The length of pipe is doubled.
ie) The maximum flow capacity of the control valve is doubled.
if) The solvent flow, Fs, is reduced by 50%.

13.2. Five mixing process designs, all having the process structure shown in
Figure Q13.2, are to be analyzed in this question. The concentration at the
outlet is controlled by adjusting a mixing stream at the inlet. The main
disturbance is the concentration of a stream flowing through a pipe and
a single stirred tank. The key parameters for each design are given in the
following table, with all values in minutes.

Design L1A/iFA + Fs) Vi/(FA + Fs) V2/iFA + Fs) Ld/iF/A) Vd/iF)
1 1.0 1.0 1.0 1.0 1.0
II 0.5 1.0 1.0 1.0 1.0
III 1.0 0.5 1.0 1.0 1.0
IV 1.0 1.0 1.0 0.5 1.0
V 1.0 1.0 1.0 1.0 0.5

KW9R8B*ffiB?H5EJ»i9K58SM?&8^^

Rank the five designs from best to worst control performance in response
to a step disturbance in Ca shown in the figure. Maximum deviation of the
controlled variable from its set point is the measure of control performance.
Assume that the feedback control system in the figure is used without
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change, but properly retuned for each plant. Hint: It would help to identify
the feedback and disturbance paths, which elements are in each, and how
each is affected by the process designs considered.

13.3. Assume that the process transfer function Gp is) used in deriving equations
(13.9) and (13.10) is unchanged but that the disturbance transfer function
was modified to second-order of the form that follows. Derive expressions
for the minimum values for the IAE and the maximum deviation of the
controlled variable equivalent to equations (13.9) and (13.10).

r ( \ - CV(S) - KdUdKS)- Dis) ~ (tV + 2t^ + 1)

13.4. In this chapter the statement is made that the integral mode is particularly
effective in reducing the effect of sine disturbances with low frequencies.
Evaluate this statement by comparing the closed-loop frequency responses
for PI and P-only controllers in the very low-frequency region. Is the P-only
controller as effective? Explain your answer.

13.5. Concerning the frequency response equation (13.3):
id) Verify that the equations are correct.
ib) Determine the modifications for a second-order disturbance model

in question 13.3 being used in place of the first-order model. How
would this change affect the general shape of the closed-loop frequency
response?

13.6. For the following process control designs, select the proper feedback con
troller modes and discuss the proper execution periods for digital imple
mentation, id) Figure Q7.6, ib) Figure 2.2, and (c) Figure Q1.9 (those
designs for which feedback control is possible).



13.7. ia) A plant with the process configuration of Figure 13.4 is analyzed in this 449
question. Calculate closed-loop frequency responses of the controlled- w^^MtmA^MMMMm
variable response to a disturbance. The plant transfer functions follow Questions
with all time units in minutes, and the controller algorithm is a PI, with
tuning to be determined by you. You may use equation (13.3) or use a
computer program to perform the complex manipulations.

2 . 2 c - 3 * _ 1 . 0
GP = , , „ . Gd =1 + 3 . 4 ^ \ + 2 s

ib) The process requires a deviation from set point of less than 1.0 for the
dominant disturbance, which has a magnitude of 1.5 at a frequency
of 0.40 rad/min. Determine whether the PI controller can achieve the
performance. If not, how should the disturbance and process feedback
transfer functions be changed to satisfy the control objective?

(c) How would the answers to parts id) and ib) of this question change if
the disturbance transfer function Gdis) had an additional dead time of
3 min?

13.8. id) In your own words, describe why processes with large dead times are
difficult to control.

ib) Sketch a typical closed-loop frequency response and explain the three
major sections of the curve at low, intermediate, and high frequencies.
Perform this exercise for both set point and disturbance inputs.

ic) As discussed in previous chapters and reiterated here, controller tun
ing is selected to be somewhat conservative to ensure stability as the
process dynamics change. Discuss how this tuning practice influences
controller performance.

id) Place each of the following factors in one of two categories, labelled
"favorable" and "unfavorable" for control performance: disturbance
frequency near critical frequency; small fraction dead time; large dis
turbance dead time; large process steady-state gain; ratio of digital
execution period to feedback dynamics greater than 0.20; detuning
controller gain for robustness; large value of i6 + x).

13.9. Open-loop responses between the manipulated and controlled variables
for four potential process designs are given in Figure Q13.9, all having the
same scales.
id) Rank the processes for the expected control performance for set point

changes.
ib) Rank the processes for the expected control performance for distur

bance response.

13.10. Based on the model of the feedback process, how would the control per
formance change for the system in Example 8.5 for each of the following
changes, made individually, to the initial steady-state operating conditions?
Calculate the modification of tuning in response to the operating condition
change and assume that this tuning change has been made.
id) Determine the PI tuning that would give "good" control performance

for the initial plant operating conditions in Example 8.5.
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ib) The flow through the heat exchanger is reduced from 0.085 to 0.0425
m3/min.

ic) The volume in the tank is increased from 2.1 to 3.0 m3.
id) The temperature set point is changed from 85.4 to 90°C.

13.11. The closed-loop frequency response calculated using equation (13.2) for
a process with the structure in Figure 13.4 and with the following process
parameters is given in Figure Q13.ll. Results are shown for several values
of the controller gain, all with the integral time at a value of 6.0. Critically
discuss these calculations and select from the three alternatives the value
of the controller gain that would give the best control performance.

GPis) =
-2.Qg-2-5'

l +4s Gds) =
1.0

1+1.85
Gds)

- * ( ■ ♦ £ )

13.12. ia) One rule of thumb for quickly estimating the standard deviation of a
sample of process data is that it is equal to | of the difference between
the maximum and minimum values in the sample. Discuss the basis
and validity of this rule of thumb.

ib) Apply this rule of thumb to the data in Figure 13.10a and b.
ic) Assume that the goal is to increase the average concentration without

exceeding the value of 6.2. Evaluate the performance of the system
in Figure 13.10ft and suggest any changes to the set point that are
appropriate.

id) Discuss some of the factors you would consider in selecting "represen
tative" open-loop dynamic data that could be used in estimating feed-
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back control performance for a potential PI controller by the method
in Example 13.5.

13.13. Based on the model of the feedback process, answer the following questions
for the three-tank system in Examples 7.2 and 9.2 for the situation in which
each tank volume is increased from 35 to 105 m3.
id) Describe the control performance you would expect with the original

tuning constants from Example 9.2 applied to the modified process.
ib) If necessary, modify the PID controller tuning.
ic) Compare the control performance for the original system and the modi

fied system after tuning changes in ib). Consider the IAE and maximum
deviation for a step inlet concentration disturbance.

13.14. Discuss how the process structure in the following systems would affect the
feedback control performance: (a) Example 1.1 (overshoot); ib) Example
5.5 (recycle); and (c) Section 3.6 (underdamped).

13.15. The tradeoff between manipulated- and controlled-variable behaviors has
been discussed frequently.
id) Describe the behavior of the manipulated variable for the system in

Figures 9.2 and 9.3. On each figure, sketch an approximate plot of the
variability of the manipulated variable, showing where the variability
is high and low as a function of the variable tuning constant(s). Either
of the following measures of the variability can be used.

2 r ° ° \ d W [ V ( t \
dtrm* -1 d t

ib) Recalculate Figure 13.7 with a PID controller and discuss the differ
ence.

13.16. The system in Example 13.10(a) evaluated the closed-loop amplitude ratio
of the controlled to disturbance variables. For the same system, calculate
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Systems 13.17. The transfer function between the set point and the controlled variable is

given in equation (13.4). Apply the following controller design method to
arrive at an algorithm other than PID. Assume the input-output response is
defined at some good performance [i.e., CV(.s)/SP(.s) = Tis) is specified].
Solve for the controller transfer function that would give this performance.
Discuss whether this controller can be implemented in analog or digital
form.

13.18. The process design in Example 13.8 with a parallel structure is considered
in this question. The concentration at the outlet of the second reactor is to
be controlled as in Example 13.8, except that the flow rate of stream A (not
the solvent) is to be manipulated.
id) Based on the different dynamics between the manipulated and con

trolled variables, predict the control performance and whether it would
be better than the system in Example 13.8. (Hint: The results from end-
of-appendix question 1.3 will help in answering this question.)

ib) Develop a dynamic simulation for this design, tune the feedback PI
controller, and compare the control performance with Example 13.8.

13.19. The process with recycle was analyzed in end-of-chapter question 5.14.
Determine the value of the recycle for which a feedback PI control system,
controlling the outlet composition Ca2 by adjusting Cao, would give the
best performance.

13.20. Chemical reactors were analyzed in question 5.7 for two different reaction
kinetics. For both kinetics (answered separately), determine which feed
back control system, controlling CA or Cb by adjusting CAo, would provide
the best performance. Base your answer entirely on the feedback dynamics,
not the process gain.


