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6 . 1 □ I N T R O D U C T I O N

To this point, we have been modelling processes using fundamental principles,
and this approach has been very valuable in establishing relationships between
parameters in physical systems and the transient behavior of the systems. Unfortu
nately, this approach has limitations, which generally result from the complexity
of fundamental models. For example, a fundamental model of a distillation col
umn with 10 components and 50 trays would have on the order of 500 differential
equations. In addition, the model would contain many parameters to character
ize the thermodynamic relationships (equilibrium K values), rate processes (heat
transfer coefficients), and model nonidealities (tray efficiencies). Therefore, mod
elling most realistic processes requires a large engineering effort to formulate the
equations, determine all parameter values, and solve the equations, usually through
numerical methods. This effort is justified when very accurate predictions of dy
namic responses over a wide range of process operating conditions are needed.

This chapter presents a very efficient alternative modelling method specifi
cally designed for process control, termed empirical identification. The models
developed using this method provide the dynamic relationship between selected
input and output variables. For example, the empirical model for the distillation
column discussed previously could relate the reflux flow rate to the distillate com
position. In comparison to this simple empirical model, the fundamental model
provides information on how all of the tray and product compositions and temper
atures depend on variables such as reflux. Thus, the empirical models described in
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Example process for empirical model
identification.

this chapter, while tailored to the specific needs of process control, do not provide
enough information to satisfy all process design and analysis requirements and
cannot replace fundamental models for all applications.

In empirical model building, models are determined by making small changes
in the input variable(s) about a nominal operating condition. The resulting dynamic
response is used to determine the model. This general procedure is essentially an
experimental linearization of the process that is valid for some region about the
nominal conditions. As we shall see in later chapters, linear transfer function
models developed using empirical methods are adequate for many process control
designs and implementations. Because the analysis methods are not presented until
later chapters, we cannot yet definitively evaluate the usefulness of the models,
although we will see that they are quite useful. Thus, it is important to monitor
the expected accuracy of the modelling methods in this chapter so that it can be
considered in later chapters. As a rough guideline, the model parameters should
be determined within ±20 percent, although much greater accuracy is required for
a few multivariable control calculations.

The empirical methods involve designed experiments, during which the pro
cess is perturbed to generate dynamic data. The success of the methods requires
close adherence to principles of experimental design and model fitting, which are
presented in the next section. In subsequent sections, two identification methods are
presented. The first method is termed the process reaction curve and employs sim
ple, graphical procedures for model fitting. The second and more general method
employs statistical principles for determining the parameters. Several examples
are presented with each method. The final section reviews some advanced issues
and other methods not presented in this chapter so that the reader will be able to
select the most appropriate technology for model building.

6.2 a AN EMPIRICAL MODEL BUILDING PROCEDURE

Empirical model building should be undertaken using the six-step procedure shown
in Figure 6.1. This procedure ensures that proper data is generated through careful
experimental design and execution. Also, the procedure makes the best use of
the data by thoroughly diagnosing and verifying results from the initial model
parameter calculations. The schematic in Figure 6.1 highlights the fact that some a
priori knowledge is required to plan the experiment and that the procedure can, and
often does, require iteration, as shown by the dashed lines. At the completion of
the procedure described in this section, an adequate model should be determined,
or the engineer will at least know that a satisfactory model has not been identified
and that further experimentation is required.

Throughout this chapter several examples are presented. The first example
is shown in Figure 6.2, which has two stirred tanks. The process model to be
identified relates the valve opening in the heating oil line to the outlet temperature
of the second tank.

Experimental Design
An important and often underestimated aspect of empirical modelling is the need
for proper experimental design. Since every method requires some type of input
perturbation, the design determines its shape and duration. It also determines the
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ditions about which the process model is accurate. Finally, the magnitude of the ^jH«aii^^^iM«^
input perturbation is determined. This magnitude must be small enough to ensure An Empirical Model
that the key safety and product quality limitations are observed. It is important to Building Procedure
begin with a perturbation that is on the safe (small) side rather than cause a severe
process disturbance.

Clearly, the design requires a priori information about the process and its
dynamic responses. This information is normally available from previous operating
experience; if no prior information is available, some preliminary experiments must
be performed. For the example in Figure 6.2, the time constants for each tank could
be used to determine a first estimate for the response of the entire system.

The result of this step is a complete plan for the test which should include

1. A description of the base operating conditions
2. A definition of the perturbations
3. A definition of the variables to be measured, along with the measurement

frequency
4. An estimate of the duration of the experiment

Naturally, the plan should be reviewed with all operating personnel to ensure that
it does not interfere with other plant activities.

Plant Experiment
The experiment should be executed as close to the plan as possible. While varia
tion in plant operation is inevitable, large disturbances during the experiment can
invalidate the results; therefore, plant operation should be monitored during the
experiment. Since the experiment is designed to establish the relationship between
one input and output, changes in other inputs during the experiment could make
the data unusable for identifying a dynamic model. This monitoring must be per
formed throughout the experiment, using measuring devices where available and
using other sources of information, such as laboratory analysis, when process sen
sors are not available. For the example in Figure 6.2, variables such as the feed inlet
temperature affect the outlet temperature of the second tank, and they should be
monitored to ensure that they are approximately constant during the experiment.

Determining Model Structure
Currently, many methods are available to calculate the parameters in a model
whose structure is set; however, few methods exist for determining the structure
of a model (e.g., first- or second-order transfer function), based solely on the data.
Typically, the engineer must assume a model structure and subsequently evaluate
the assumption. The initial structure is selected based on prior knowledge of the
unit operation, perhaps based on the structure of a fundamental model, and based
on patterns in the experimental data just collected. The assumption is evaluated in
the latter diagnostic step of this procedure.

The goal is not to develop a model that exactly matches the experimental data.
Rather, the goal is to develop a model that describes the input-output behavior of
the process adequately for use in process control.
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Empirical methods typically use low-order linear models with dead time. Often
(but not always), nrst-order-with-dead-time models are adequate for process control
analysis and design.

At times, higher-order models are required, and advanced empirical methods are
available for determining the model structure (Box and Jenkins, 1976).

Parameter Estimation
At this point a model structure has been selected and data has been collected. Two
methods are presented in this chapter to determine values for the model parameters
so that the model provides a good fit to the experimental data. One method uses
a graphical technique; the other uses statistical principles. Both methods provide
estimates for parameters in transfer function models, such as gain, time constant,
and dead time in a first-order-with-dead-time model. The methods differ in the
generality allowed in the model structure and experimental design.

Diagnostic Evaluation
Some evaluation is required before the model is used for control. The diagnostic
level of evaluation determines how well the model fits the data used for parameter
estimation. Generally, the diagnostic evaluation can use two approaches: (1) a
comparison of the model prediction with the measured data and (2) a comparison
of the results with any assumptions used in the estimation method.

Verification
The final check on the model is to verify it by comparison with additional data
not used in the parameter estimation. Although this step is not always performed,
it is worth comparing the model to data collected at another time to be sure that
typical variation in plant operation does not significantly degrade model accuracy.
The methods used in this step are the same as in the diagnostic evaluation step.

It is appropriate to emphasize once again that the model developed by this
procedure relates the input perturbation to the output response. The process mod
elled includes all equipment between the input and output; thus, the typical model
includes the dynamics of valves and sensors as well as the process equipment. As
we will see later, this is not a limitation; in fact, the empirical model provides the
proper information for control analysis, because it includes the elements in the
control loop.

Finally, two conflicting objectives must always be balanced in performing
this experimental procedure. The first objective is the maintenance of safe, smooth,
and profitable plant operation, for which a small experimental input perturbation is
desired. However, the second objective is the development of an accurate model for
process control design that will be improved by a relatively large input perturbation.
The proper experimental procedure must balance these two objectives by allowing
a short-term disturbance so that the future plant operation is improved through
good process control.
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The process reaction curve is probably the most widely used method for identifying
dynamic models. It is simple to perform, and although it is the least general method,
it provides adequate models for many applications. First, the method is explained
and demonstrated through an example. Then it is critically evaluated, with strong
and weak points noted.

The process reaction curve method involves the following four actions:

The Process Reaction
Curve

1. Allow the process to reach steady state.
2. Introduce a single step change in the input variable.
3. Collect input and output response data until the process again reaches steady

state.
4. Perform the graphical process reaction curve calculations.

The graphical calculations determine the parameters for a first-order-with-
dead-time model: the process reaction curve is restricted to this model. The form
of the model is as follows, with Xis) denoting the input and Yis) denoting the
output, both expressed in deviation variables:

Yis) Kpe-es
Xis) xs + 1 (6.1)

There are two slightly different graphical techniques in common use, and both
are explained in this section. The first technique, Method I, adapted from Ziegler
and Nichols (1942), uses the graphical calculations shown in Figure 6.3 for the
stirred-tank process in Figure 6.2. The intermediate values determined from the

FIGURE 6.3

Process reaction curve, Method I.
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graph are the magnitude of the input change, 8', the magnitude of the steady-state
change in the output, A; and the maximum slope of the output-versus-time plot, S.
The values from the plot can be related to the model parameters according to the
following relationships for a first-order-with-dead-time model. The general model
for a step in the input with t > 9 is

Y ' ( t ) = K p S [ l - e - { t - e ) ' r ] ( 6 . 2 )
The slope for this response at any time t > 9 can be determined to be

« = | { V [ l - - ^ ] } = f ^ - ^ (6.3)

(6.4)

The maximum slope occurs at t = 9, so S = A/x. Thus, the model parameters
can be calculated as

KP = A/5
x = A/S
9 = intercept of maximum slope with initial value

(as shown in Figure 6.3)
A second technique, Method II, uses the graphical calculations shown in Fig

ure 6.4. The intermediate values determined from the graph are the magnitude of
the input change, 8; the magnitude of the steady-state change in the output, A;
and the times at which the output reaches 28 and 63 percent of its final value.
The values from the plot can be related to the model parameters using the general
expression in equation (6.2). Any two values of time can be selected to determine
the unknown parameters, 9 and r. The typical times are selected where the tran
sient response is changing rapidly so that the model parameters can be accurately
determined in spite of measurement noise (Smith, 1972). The expressions are

Y(9 + x) = A(l - e~l) = 0.632A
Y(9 + r/3) = A(l - e~l/3) = 0.283A

c
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Thus, the values of time at which the output reaches 28.3 and 63.2 percent of its
final value are used to calculate the model parameters.

x
hz% - 9 + - t63% = 9 + x3 ( 6 . 6 )

X — 1.5(̂ 3% — *28%) 9 — f63% — X

Ideally, both techniques should give representative models; however, Method
I requires the engineer to find a slope (i.e., a derivative) of a measured signal.
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Because of the difficulty in evaluating the slope, especially when the signal has high-
frequency noise, Method I typically has larger errors in the parameter estimates; thus,
Method II is preferred.

EXAMPLE 6.1.
The process reaction experiments have been performed on the stirred-tank system
in Figure 6.2 and the data is given in Figures 6.3 and 6.4 for Methods I and II,
respectively. Determine the parameters for the first-order-with-dead-time model.
Solution. The graphical calculations are shown in Figure 6.3 for Method I, and
the calculations are summarized as

8 = 5.0% open
A = 13.1°C

KP = A/8 = (13.1°C)/(5% open) = 2.6°C/% open
5 = 1.40°C/min
r = A/5 = (13.1°C)/(1.40°C/min) = 9.36 min
9 = 3.3 min

The graphical results are shown in Figure 6.4 for Method II, and the calculations
are summarized below. Note that the calculations for KPl A, and 8 are the same
and thus not repeated. Also, time is measured from the input step change.

0.63A = 8.3°C f63* = 9.7 min
0.28A = 3.7°C t2m = 5.7 min

r = \.5(t63% - f28%) = 1-5(9.7 - 5.7) min = 6.0 min
9 — t(,3% — r = (9.7 — 6.0) min = 3.7 min

w
db

cb
%

Further details for the process reaction curve method are summarized below with
respect to the six-step empirical procedure.

Exper imental Design
The calculation procedure is based on a perfect step change in the input as demon
strated in equation (6.2). The input can normally be changed in a step when it is a
manipulated variable, such as valve percent open; however, some control designs
will require models for inputs such as feed composition, which cannot be manip
ulated in a step, if at all. The sensitivity of the model results to deviations from a
perfect input step are shown in Figure 6.5 for an example in which the true plant
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FIGURE 6.5

Sensitivity of process reaction curve to an imperfect step input, true
process 0/(0 + t) = 0.33.

had a dead time of 0.5 and a process time constant (Tpr0cess) of 1.0. The step change
was introduced through a first-order system with a time constant (Tinput) that varied
from 0.0 (i.e., a perfect step) to 1.0. This case study demonstrates that very small
deviations from a perfect step input are acceptable but that large deviations lead
to significant model parameter errors, especially in the dead time.

In addition to the input shape, the input magnitude is also important. As
previously noted, the accuracy of the model depends on the magnitude of the
input step change. The output change cannot be too small, because of noise in
the measured output, which is caused by many small process disturbances and
sensor nonidealities. The output signal is the magnitude of the change in the output
variable. Naturally, the larger the input step, the more accurate the modelling results
but the larger the disturbance to the process.

A rough guideline for the process reaction curve is that the signal-to-noise ratio
should be at least 5.

The noise level can be estimated as the variation experienced by the output
variable when all measured inputs are constant. For example, if an output temper
ature varies ±1°C due to noise, the input magnitude should be large enough to
cause an output change A of at least 5°C.

Finally, the duration of the experiment is set by the requirement of achieving
a final steady state after the input step. Thus, the experiment would be expected
to last at least a time equal to the dead time plus four time constants, 9 +4z.
In the stirred-tank example, the duration of the experiment could be estimated
from the time constants of the two tanks, plus some time for the heat exchanger



and sensor dynamics. If the data is not recorded continuously, it should be col
lected frequently enough for the graphical analysis; 40 or more points would be
preferable, depending on the amount of high-frequency noise.

Plant Experiment
Since model errors can be large if another, perhaps unmeasured, input variable
changes, experiments should be designed to identify whether disturbances have
occurred. One way to do this is to ensure that the final condition of the manipulated
input variable is the same as the initial condition, which naturally requires more
than one step change. Then, if the output variable also returns to its initial condition,
one can reasonably assume that no long-term disturbance has occurred, although
a transient disturbance could take place and not be identified by this checking
method. If the final value of the output variable is significantly different from its
initial value, the entire experiment is questionable and should be repeated. This
situation is discussed further in Example 6.3.

Diagnostic Evaluation
The basic technique for evaluating results of the process reaction curve is to plot the
data and the model predictions on the same graph. Visual comparison can be used
to determine whether the model provides a good fit to the data used in calculating
its parameters. This procedure has been applied to Example 6.1 using the results
from Method II, and the comparison is shown in Figure 6.6. Since the data and
model do not differ by more than about 0.5°C throughout the transient, the model
would normally be accepted for most control analyses.

Most of the control analysis methods presented in later parts of the book require
linear models, and information on strong nonlinearities would be a valuable result
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Comparison of measured and predicted outputs.
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Time
FIGURE 6.7

Example of experimental design to evaluate the linearity of a
process.

of empirical model identification. The linearity can be evaluated by comparing
the model parameters determined from experiments of various magnitudes and
directions, as shown in Figure 6.7. If the model parameters are similar, the process
is nearly linear over the range investigated. If the parameters are very different,
the process is highly nonlinear, and control methods described in Chapter 16 may
have to be applied.

Ve r i fi ca t i on

If additional data is collected that is not used to calculate the model parameters, it
can be compared with the model using the same techniques as in the diagnostic step.

EXAMPLE 6.2.
A more realistic set of data for the two stirred-tank heating process is given in
Figure 6.8. This data has noise, which could be due to imperfect mixing, sensor
noise, and variation in other input variables. The application of the process reaction
curve requires some judgment. The reader should perform both methods on the
data and note the difficulty in Method I. Typical results for the methods are given
in the following table, but the reader can expect to obtain slightly different values
due to the noise.

Method Method II

KP 2.6 2.6 °C/%open
0 2.4 3.7 min
r 10.8 5.9 min



FIGURE 6.8

Process reaction curve for Example 6.2.

FIGURE 6.9

Experiment data for process reaction curve when input is returned to its
initial condition.

EXAMPLE 6.3.
Data for two step changes is given in Figure 6.9. Determine a dynamic model
using the process reaction curve method.

Note that there is no difference between the initial and final values of the
input valve opening. However, the output temperature does not return to its initial
value. This is due to some nonideality in the experiment, such as an unmeasured

do 1
do
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disturbance or a sticky valve that did not move as expected. Naturally, the output
variable will not return to exactly the same value, but the difference between the
initial and final values in this example seems suspiciously large, because 4°C is
50 percent of the temperature change occurring during the experiment. Therefore,
this data should not be used, and the experiment should be repeated.

EXAMPLE 6.4.
A fundamental model for a tank mixing process similar to Figure 6.10a will be
developed in Chapter 7, where the time constant of each tank is shown to be
volume/volumetric flow rate (V/F). Determine approximate models for this process
at three flow rates of stream B given below when each tank volume is 35 m3.

This example demonstrates the usefulness of the insight provided from funda
mental modelling, even though a simplified model is determined empirically. The
process reaction curve experiment was performed for this process at the three flow

$
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FIGURE 6.10
For Example 6.4: (a) Three-tank mixing process; ib) process reaction
curve for base case.



rates, all at a base exit concentration of 3 percent A, and the results at the base
case flow are shown in Figure 6.106. The results are summarized in the following
table.
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Simplified Fundamental
Flow
(m3/min)

KP
(% A/% open)

0
(min)

T
(min)

0 + T
(min) (min)

5.1
7.0
8.1

0.055
0.04
0.036

7.6
5.5
4.7

14.5
10.5
9.1

22.1
16.0
13.8

20.7
15.0 +- base case
12.9
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The fundamental model demonstrates that the time constants (r = V/F)
depend on the flow rate, decreasing as the flow increases. This trend is confirmed
in the simplified model as well. Also, the approximate relationship for systems of
noninteracting time constants in series, equation (5.41 b), that the sum of the dead
times plus time constants is unchanged by model simplification, is rather good for
this process.

The most important characteristics of the process reaction curve method are
summarized in Table 6.1. The major advantages of the process reaction curve
method are its simplicity and short experimental duration, which result in its fre
quent application for simple control models.

TABLE 6.1
Summary off the process reaction curve

Characteristic Process reaction curve

Input magnitude

Experiment duration

Input change
Model structure

Accuracy with unmeasured disturbances

Diagnostics
Calculations

Large enough to give an output signal-to-noise ratio
greater than 5
The process should reach steady state; thus the
duration is at least 0 + 4z
A nearly perfect step change is required
The model is restricted to first-order with dead time;
this model structure is adequate for processes having
overdamped, monotonic step responses
Accuracy can be strongly affected (degraded) by
significant disturbances
Plot model versus data; return input to initial value
Simple hand and graphical calculations
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6.4 a STATISTICAL MODEL IDENTIFICATION
The previously described graphical method had two major limitations: a first-order-
with-dead-time model and a perfect step input. Statistical model identification
methods provide more flexible approaches to identification that relax these limits
to model structure and experimental design. In addition, the statistical method
uses all data and not just a few points from the response, which should provide
better parameter estimates from noisy process data. A simple version of statistical
model fitting is presented here to introduce the concept and provide another useful
identification method. The same six-step procedure described in Section 6.2 is
used with this method.

The statistical method introduced here involves the following three actions:

1. Introduce a perturbation (or sequence of perturbations) in the input variable.
There is no restriction on the shape of the perturbation, but the effect on the
output must be large enough to enable a model to be identified.

2. ''Collect input and output response data. It is not necessary that the process regain
steady state at the end of the experiment.

3. Calculate the model parameters as described in the subsequent paragraphs.

The statistical method described in this section uses a regression method to fit
the experimental data, and the closed-form solution method requires an algebraic
equation with unknown parameters. Thus, the transfer function model must be
converted into an algebraic model that relates the current value of the output to
past values of the input and output. There are several methods for performing this
transform; the most accurate and general for linear systems involves z-transforms,
which serve a similar purpose for discrete systems as Laplace transforms serve
for continuous systems (see Appendix L). The method used here is much simpler
and is adequate for demonstrating the statistical identification method and fitting
models of simple structure, such as first-order with dead time (see Appendix F).

The first-order-with-dead-time model can be written in the time domain ac
cording to the equation

JY'it) +Y'it) = KpX'it-0)
dt (6.7)

Again, the prime denotes deviation from the initial steady-state value. This differ
ential equation can be integrated from time f,- to t-t + At assuming that the input
X'it) is constant over this period. Note that the dead time is represented by an
integer number of sample delays (i.e., T = 9/ At). The resulting equation is

y/+1 = e-"'TYt' + Kpi\ - e-A"*)Xl (6.8)
In further equations the notation is simplified according to the equation

y / + l = a y ; + * x ; _ r ( 6 . 9 )
The challenge is to determine the parameters a, b, and T that provide the best
model for the data. Then the model parameters Kp,z, and 9 can be calculated.

The procedure used involves linear regression, which is briefly explained here
and is thoroughly presented in many references (e.g., Box et al., 1978). Assume



for the moment that we know the value of r, the dead time (this assumption will be
addressed later in the method). Typical data from the process experiment is given
in Table 6.2; note that the measurements are provided at equispaced intervals.
Since we want to fit an algebraic equation of the form in equation (6.9), the data
must be arranged to conform to the equation. This is done in Table 6.2, where
for every measured value of (Y{+l)m the corresponding measured values of (7/),,,
and (Xj_r)m are provided on the same line. Using the model it is also possible
to predict the output variable at any time, with (Yi+\)p representing the predicted
value, using the appropriate measured variables.

(Y'i+l)p=a(Y!)m+b(X'i_r)l (6.10)

Note that the subscript m indicates a measured value, and the subscript p
indicates a predicted output value. The "best" model parameters a and b would
provide an accurate prediction of the output at each time; thus, the goal is to
calculate the values of the parameters a and b so that (Y'i+l)m and (Y[+l)p are as
nearly equal as possible. The common technique for determining the parameters
is to apply the least squares method, which minimizes the sum of error squared
between the measured and predicted values over all samples, i = r + 1 to n. The
error can be expressed as follows:

n n n

i = r + \ / = r + i / = r + i
(6.11)

The minimization of this term requires that the derivatives of the sum of error
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TABLE 6.2
Data for statistical model identification

Data in original format as collected
in experiment

Data in restructured format for regression model
fitting, first-order-with-dead-time model with

dead time of two sample periods

Input , X Ou tpu t , Y
Sample
no. i

z vector in
equat ion

(6.16)

U matrix
X' = X
Y' = Y

in equation (6.16)
- Xs with X, = 50
- Ys with Ys = 75

T i m e r Output, y;+1
De layed

Output , F / input , X(_2

0 50 75 1
0.2 50 75 2
0.4 52 75 3 0 0 0
0.6 52 75 4 0.05 0 0
0.8 52 75.05 5 0.1 0.05 2
1.0 52 75.1 6 0.3 0.1 2
1.2 52 75.3 7 0.6 0.3 2
1.4 52 75.6 8 0.7 0.6 2
1.6 52 75.7

Table contiinued for diiration of experiment
I - .MKK,* 'Mm^M^^m^i i^ i^ i i i^^^mmm^^^^ikm®s^mmiimm$immMM&mmz^mmuMx&i
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squares with respect to the parameters are zero.

_3_
da

d_
lb

U=r+i

L/=r+i

71

= -2 E (y/)« IW+i)« " «G7)« - *(*/-r>«] = 0
/=r+i

(6.12)

= -2 J] <*/-r>« IW+i)» - flW)m - b(X'{_r)m] = 0
i=r+i

(6.13)
Equations (6.12) and (6.13) are linear in the two unknowns a and b, as is perhaps
""*~ easily recognized when the equations are rearranged as follows:more

n n n
« E (y/)» +* E (*7)*(*/-r)« = E (^"W+i)" (6'14>

j = r + i i = r + i i = r + i

E <*/)-(Xl-r)«+* E (X-!-r)» = E (X/-r)-(i7+i)« (615)
= r + i / = r + i i = r + i

The values of the unknowns can be determined using various methods for solving
linear equations (Anton, 1987); however, a more convenient approach is to use a
computer program that is designed to solve the least squares problem. With these
programs, the engineer simply enters the data in the form of Table 6.2, and the
program automatically sets up and solves equations (6.14) and (6.15) for a and b.

These programs are designed to solve the least squares method by matrix
methods. The measured values for this problem can be entered into the following
matrices:

U =

Y'

Y 'M

Y'\Jn-\

X'
x\

X '

3-r
4 - r

n - r - i j

z = n
Y1_ n_

(6.16)

The least squares solution for the parameters can be shown to be (Graupe, 1972)

= ( U T U ) _ , U T z ( 6 . 1 7 )

Many computer programs exist for solving linear least squares, and simple problems
can be solved easily using a spreadsheet program with a linear regression option.

Given this method for determining the coefficients a and b, it is necessary to return
to the assumption that the dead time, T = 9/At, is known. To determine the dead
time accurately, it is necessary to solve the least squares problem in equations
(6.14) and (6.15) for several values of T, with the value of T giving the lowest
sum of error squared (more properly, the sum of error squared divided by the
number of degrees of freedom, which is equal to the number of data points minus
the number of parameters fitted) being the best estimate of the dead time. This
approach, which is essentially a search in one direction, is required because the
variable T is discrete (i.e., it takes only integer values), so that it is not possible



to determine the analytical derivative of the sum of errors squared with respect
to dead time. Caution should be used, because the relationship between the dead
time and sum of errors squared may not be monotonic; if more than one minimum
exists, the dead time resulting in the smallest sum of errors squared should be
selected.

The statistical method presented in this section, minimizing the sum of er
rors squared, is an intuitively appealing approach to finding the best values of
the parameters. However, it depends on assumptions that, if violated significantly,
could lead to erroneous estimates of the parameters. These assumptions are com
pletely described in statistics textbooks (Box et al., 1978). The most important
assumptions are the following:
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1. The error £,- is an independent random variable with zero mean.
2. The model structure reasonably represents the true process dynamics.
3. The parameters a and b do not change significantly during the experiment.

The following assumptions are also made in the least squares method; how
ever, the model accuracy is not as strongly affected when they are slightly violated:

4. The variance of the error is constant.
5. The input variable is known without error.

When all assumptions are valid, the least squares assumption will yield good
estimates of the parameters. Note that the experimental and diagnostic methods
are designed to ensure that the assumptions are satisfied.

EXAMPLE 6.5.
Determine the parameters for a first-order-with-dead-time model for the stirred-
tank example data in Figure 6.3.

The data must be sampled at equispaced periods, which were chosen to be
0.333 minutes for this example. Since the data arrays are very long, they are not
reported. The data was organized as shown in Table 6.2. Several different values
of the dead time were assumed, and the regression was performed for each. The
results are summarized in the following table.

Dead time, r Y,e2
7 0.964 0.101 7.52
8 0.9605 0.108 6.33
9 0.9578 0.1143 5.86
10 0.9555 0.1196 6.21

(minimum)

The dead time is selected to be the value that gives the smallest sum of errors
squared; thus, the estimated dead time is 3 minutes, 0 = (O(Af) = 9(0.333). The
other model parameters can be calculated from the regression results.

r = -At/(\na) = -0.333/(-0.0431) = 7.7 min
Kp = b/(\ -a) = 0.1143/(1 - 0.9578) = 2.7°C/%open
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The comments in Section 6.3 regarding the process reaction curve and the
six-step procedure are also relevant for this statistical method. Some additional
comments specific to the statistical method are given here.

Exper imental Design
The input change can have a general shape (i.e., a step is not required), although
Example 6.5 demonstrates that the statistical method works for step inputs. This
generality is very important, because it is sometimes necessary to build models for
inputs that are not directly manipulated, such as measured disturbance variables.

Sufficient input changes are required to provide enough information to over
come random noise in the measurement. Also, the data selected from the transient
for use in the least squares determines which aspects of the dynamic response are
fitted best. For example, if the duration of the experiment is too short, the method
will provide a good fit for the initial part of the transient, but not necessarily for
the steady-state gain. For this method with one or a few input changes, the in
put changes should be large enough and of long enough duration that the output
variable reaches at least 63 percent of its final value. Note that more sophisticated
experimental design methods (beyond the treatment in this book) are available that
require much smaller output variation at the expense of longer experiment duration
(Box and Jenkins, 1976).

Finally, the dead time cannot be determined with accuracy greater than the
data collection sample period At. Thus, this period must be small enough to satisfy
control system design requirements explained in later parts of the book. For now,
a rough guideline can be used that At should be less than 5 percent of the sum of
the dead time plus time constant.

Plant Exper imentat ion

The input variable must be measured without significant noise. If this is not the
case, more sophisticated statistical methods must be used.

Model Structure

Equations have been derived for a first-order model in this chapter. Other models
could be derived in the same manner. The simplest model structure that provides
an adequate fit should be selected.

Diagnost ic Procedure
One of the assumptions was that the error—the deviation between the model predic
tion and the measurement—is a random variable. The errors, sometimes referred to
as the residuals, can be plotted against time to determine whether any unexpected,
large correlation in time exists. This is done for the results of the following example.
EXAMPLE 6.6.
Data has been collected for the same stirred-tank system analyzed in Example
6.2; however, the data in this example contains noise, as shown in Figure 6.8.
Determine the model parameters using the statistical identification method.
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FIGURE 6.11
Comparison of measured and predicted output values from Example 6.6.

The procedure for this data set is the same as used in Example 6.5. No judg
ment is required in fitting slopes or smoothing curves as was required with the
process reaction curve method. The results are as follows, plotted in Figure 6.11:

At = 0.33 min T = 11 a = 0.9384 b = 0.2578
9 = 3.66 min r = 5.2 min Kp = 2.56°C/% open

Note that the model parameters are similar to the Method II results without noise,
but that a slightly different value is determined for the dead time. The graphical
comparison indicates a good fit to the experimental data.

Further diagnostic analysis is possible by plotting the residuals to determine
whether they are nearly random. This is done on Figure 6.12. The plot shows little
correlation; note that some correlation is expected, because the simple model
structure selected will not often provide the best possible fit to a set of data. Since
the errors are only slightly correlated and small, the model structure and dead time
are judged to be valid.
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EXAMPLE 6.7.
The dynamic data in Figure 6.13 was collected, showing the relationship between
the inlet and outlet temperatures of the stirred tanks in Figure 6.2. Naturally, this
data would require an additional sensor for the inlet temperature to the first tank.
When this data was collected, the heating valve position and all other input vari
ables were constant. Note that the input change was not even approximately a
step, because the temperature depends on the operation of upstream units. De
termine the parameters for a first-order-with-dead-time model.

Again, the statistical procedure was used. The results are as follows:
r = 11 a = 0.9228 b = 0.0760

9 = 3.66 min z = 4.2 min Kp = 0.98°C/°C
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Plot of residuals between measured and predicted outputs from
Example 6.6.
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FIGURE 6.13

Experimental data and model prediction for an input that is not a perfect
step, analyzed in Example 6.7.

The model is compared with the data in Figure 6.13. The dynamic response is
somewhat faster than the previous response, as might be expected because this
model does not include the heat exchanger dynamics. The data in this example
could not be analyzed using the graphical process reaction curve method because



the input deviates substantially from a perfect step. However, the statistical method
provided good parameter estimates from this data.

The linear regression identification method for a first-order-with-dead-time
model is more general than the process reaction curve and can be used to fit
important industrial processes. However, it also has limitations. Although it is
easier to use and yields more accurate parameter values when the data has noise,
it gives erroneous results when the noise is too large compared with the output
change caused by the experiment—the same trend as with the process reaction
curve.

EXAMPLE 6.8.
Figure 6.14 gives data recorded when a very small input change is introduced into
the valve opening in the stirred tank system in Figure 6.2. The statistical method
can be used, but the results (r = 0.6 min, 9 = 3.66 min, and Kp - 2.3° C/%open)
deviate from the previously reported, more accurate results obtained with larger
input disturbances. Clearly, a model from such a small input change is not reliable.

^ m ^ 1MmM*^UUmmmilMm*UimiimilUMMm*^^m

In addition, the simple statistical method used here is susceptible to unmea
sured disturbances. The experimental design shown in Figure 6.9 is recommended
to identify such disturbances. The statistical identification method described in
this section is summarized in Table 6.3.
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FIGURE 6.14

Example of empirical identification with an input perturbation that is
too small.
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TABLE 6.3

Summary of the statistical identification method
Characteristic Statistical identification

Input

Experiment duration
Input change
Model structure

Accuracy with
unmeasured disturbances
Diagnostics

Calculations

If the input change approximates a step, the pro
cess output should deviate at least 63% of the
potential steady-state change.
The process does not have to reach steady state.
No requirement regarding the shape of the input.
Model structures other than first-order-with-
dead-time are possible, although the equations
given here are restricted to first-order-with-
dead-time.
Accuracy is strongly affected by significant
disturbances.
Plot model versus data, and plot residuals versus
time.
Calculations can be easily performed with a
spread sheet or special-purpose statistical
computer program.

6.5 o ADDITIONAL TOPICS IN IDENTIFICATION

Some additional topics in identification are addressed in this section. The topics
relate to both the process reaction curve method and the statistical method, unless
otherwise noted.

Other Model Structures

The methods presented here provide satisfactory models for processes that give
smooth, sigmoidal-shaped responses to a step input. Most, but not all, processes
are in this category. More complex model structures are required for the higher-
order, underdamped, and inverse response systems. Graphical methods are avail
able for second-order systems undergoing step changes (Graupe, 1972); however,
the methods seem useful only when the output data has little noise, since they
appear sensitive to noise.

Many advanced statistical methods are available for more complex model
structures (Cryor, 1986; Box and Jenkins, 1976). The general concept is unchanged,
but the major difference from the method demonstrated in this chapter is that the
least squares equations, similar to equations (6.14) and (6.15), cannot be arranged
into a set of linear equations in variables uniquely related to the model parameters;
therefore, a nonlinear optimization method is required for calculating the param
eters. Also, confidence intervals provide useful diagnostic information. Again,
the engineer must assume a model structure and employ diagnostics to determine
whether the assumed structure is adequate.
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Sometimes models are desired between an input and several outputs. For example, mmmmmmmmmsmmmm
we may need the transfer function models between the reflux and the distillate and AddW identification
bottoms product compositions of a distillation column. These models could be
determined from one set of experimental data in which the reflux flow is perturbed
and both compositions are recorded, as shown in Figure 5.lib. Then each model
would be evaluated individually using the appropriate method, such as the process
reaction curve.

Operating Conditions
The operating conditions for the experiment should be as close as possible to the
normal operation of the process when the control system, designed using the model,
is in operation. This is only natural, because significant deviation could introduce
error into the model and reduce the effectiveness of the control. For example, the
dynamic response of the stirred-tank process in Figure 6.2 depends on the feed
flow rate, as we would determine from a fundamental model. If the feed flow rate
changes from the conditions under which the identification is performed, the linear
transfer function model will be in error.

An associated issue relates to the status of the control system when the exper
iment is performed. A full discussion of this topic is premature here; however, the
reader should appreciate that the process, including associated control strategies,
must respond during the experiment as it would during normal operation. This
topic is covered as appropriate in later chapters.

Frequency Response
As an alternative identification method, the frequency response of some physical
systems, such as electrical circuits, can be determined experimentally by intro
ducing input sine waves at several frequencies. Models can then be determined
from the amplitude and phase angle relationships as a function of frequency. This
method is not appropriate for complex chemical processes, because of the extreme
disturbances caused over long durations, although it has been demonstrated on
some unit operations (Harriott, 1964).

As a more practical manner for using the amplitude and phase relationships,
the process frequency response can be constructed from a single input perturbation
using Fourier analysis (Hougen, 1964). This method has some of the advantages
of the statistical method (for example, it allows inputs of general shape), but the
statistical methods are generally preferred.

Identification Under Control
The empirical methods presented in this chapter are for input-output relation
ships without control. After covering Part I on feedback control, you may wonder
whether the process model can be identified when being controlled. The answer
is yes, but only under specific conditions, as explained by Box and MacGregor
(1976).
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6 . 6 □ C O N C L U S I O N S

Transfer function models of most chemical processes can be identified empirically
using the methods described in this chapter. The general, six-step experimental
procedure should be employed, regardless of the calculation method used.

It is again worth emphasizing that the vast majority of control strategies are based on
empirical models; thus, the methods in this chapter are of great practical importance.

Model Error

Model errors result from measurement noise, unmeasured disturbances, imperfect
input adjustments, and applying simple linear models to truly nonlinear processes.
The examples in this chapter give realistic results, which indicate that model pa
rameters are known only within ±20 percent at best for many processes. However,
these models appear to capture the dominant dynamic behavior. Engineers must al
ways consider the sensitivity of their decisions and calculations to expected model
errors to ensure good performance of their designs. We will investigate the ef
fects of model errors in later chapters and will learn that moderate errors do not
substantially degrade the performance of single-loop controllers. A summary of a
few sensitivity studies, which are helpful when reviewing modelling and control
design, are given in Table 6.4.

TABLE 6.4

Summary of sensitivity of control stability and performance to
modelling errors
Case Issue studied

Example 9.2

Example 9.5

Example 10.15

Example 10.18

Figure 13.16 and discussion

The effect on performance of using controller
tuning parameters based on an empirical model
that is lower-order than the true process
The effect on performance of using controller
tuning parameters based on an empirical model
that is substantially different from the true
process
The effect of modelling error on the stability of
feedback control, showing the change of model
parameters likely to lead to significant differ
ences in dynamic behavior
The effect of modelling error on the stability of
feedback control, showing the critical frequency
range of importance
The effect of modelling error on the perfor
mance of feedback control, showing the
frequency range of importance



Experimental Design
The design of the experimental conditions, especially the input perturbation, has a
great effect on the success of empirical model identification. The perturbation must
be large enough, compared with other effects on the output, to allow accurate model
parameter estimation. Naturally, this requirement is in conflict with the desire to
minimize process disturbances, and some compromise is required. Model accuracy
depends strongly on the experimental procedure, and no amount of analysis can
compensate for a very poor experiment.
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Six-Step Procedure
Empirical model identification is an iterative procedure that may involve several
experiments and potential model structures before a satisfactory model has been
determined. The procedure in Figure 6.1 clearly demonstrates the requirement
for a priori information about the process to design the experiment. Since this
information may be inexact, the experimental procedure may have to be repeated,
perhaps using a larger perturbation, to obtain useful data. Also, the results of the
analysis should be evaluated with diagnostic procedures to ensure that the model
is accurate enough for control design. It is essential for engineers to recognize
that the calculation procedure always yields parameter values and that they must
judge the validity of the results based on diagnostics and knowledge of the process
behavior based on fundamental models.

No process is known exactly! Good results using models with (unavoidable) errors
is not simply fortuitous; process control methods have been developed over the years
to function well in realistic situations.

In conclusion, empirical models can be determined by a rather straightforward ex
perimental procedure combined with either a graphical or a statistical parameter es
timation method. Usually, the models take the form of low-order transfer functions
with dead time, which, although not capable of perfect prediction of all aspects of
the process performance, provide the essential input-output relationships required
for process control. The important topic of model error is considered in many of
the subsequent chapters, where it is shown that models of the accuracy achieved
with these empirical methods are adequate for many control design calculations.
However, the selection of algorithms and determination of adjustable parameters
must be performed with due consideration for the likely model errors. Therefore,
lessons learned in this chapter about accuracy are applied in many later chapters.
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ADDITIONAL RESOURCES
Advanced statistical model identification methods are widely used in practice.
The following reference provides further insight into some of the more popular
approaches.

Vandaele, W, Applied Time Series and Box-Jenkins Models, Academic Press,
New York, 1983.

The following proceedings give a selection of model identification applica
tions.

Ekyhoff, P., Trends and Progress in System Identification, Pergamon Press,
Oxford, 1981.

Computer programs are available to ease the application of statistical methods.
The programs noted below can be applied to simple linear regression (Excel and
Corel Quattro), to general statistical model fitting (S AS), and to empirical dynamic
modelling for process control (MATLAB).

Excel®, Microsoft
MATLAB® and Identification Toolbox, The MathWorks
Corel Quattro®, Corel
SAS®, SAS Institute

International standards have been established for testing and reporting dy
namic models for process control equipment. A good summary is provided in

ISA-S26-1968 and ANSI MC4.1-1975, Dynamic Response Testing of Pro
cess Control Instrumentation, Instrument Society of America, Research
Triangle Park, NC, 1968.



Good results from the empirical method depend on proper engineering practices in
experimental design and results analysis. The engineer must always cross-check the
empirical model against the possible models based on physical principles.

201

Questions

QUESTIONS
6.1. An experiment has been performed on a fired heater (furnace). The fuel

valve was opened an additional increment of 2 percent in a step, giving
the resulting temperature response in Figure Q6.1. Determine the model
parameters using both process reaction curve methods and estimate the in
accuracies in the parameter values due to the data and calculation methods.

6.2. Data has been collected from a chemical reactor. The inlet concentration
was the only input variable that changed when the data was collected. The
input and output data is given in Table Q6.2.

TABLE Q6.2

Time
(min)

Input
( % o p e n )

O u t p u t
(°C)

T i m e
(min)

I n p u t
( % o p e n )

O u t p u t
(°C)

T i m e
(min)

I n p u t
(% open)

O u t p u t
(°C)

0 30 69.65 36 38 70.22 72 38 75.27
4 30 69.7 40 38 71.32 76 38 75.97
8 30 70.41 44 38 72.33 80 38 76.30
12 30 70.28 48 38 72.92 84 38 76.30
16 30 69.55 52 38 73.45 88 38 75.51
20 30 70.32 56 38 74.09 92 38 74.86
24 38 69.97 60 38 75.00 96 38 75.86
28 38 69.96 64 38 75.25 100 38 76.20
32 38 69.68 68 38 74.78 104 38 76.0
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FIGURE Q6.3

(a) Use the statistical identification method to estimate parameters in a
first-order-with-dead-time model.

ib) Determine whether the model structure is adequate for this data,
(c) Estimate the inaccuracies in the parameter values due to the data and

calculation method.
You may use a spreadsheet or statistical computer program. Note that the
number of data points is smaller than desired for good estimation; this is
solely to reduce the effort of typing the data into your program.

6.3. id) The chemical reactor system in Figure Q6.3 is to be modelled. The
relationship between the steam valve on the preheat exchanger and the
outlet concentration is to be determined. Develop a complete experi
mental plan for a process reaction curve experiment. Include in your
plan all actions, variables to be recorded or monitored, and any a priori
information required from the plant operating personnel.

ib) Repeat the discussion for the experiment to model the effect of the
flow of the reboiler heating medium on the distillate composition for
the distillation tower in Figure 5.18.
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6.4. Several experiments were performed on the chemical reactor shown in
Figure Q6.3. In each experiment, the heat exchanger valve was changed and
the reactor outlet temperature T4 was recorded. The dynamic data are given
in Figure Q6.4a through d. Discuss the results of each experiment, noting
any deficiencies and stating whether the data can be used for estimation
and if so, which estimation method(s)—process reaction curve, statistical,
or both—could be used.

6.5. Individual experiments have been performed on the process in Figure Q6.3.
The following transfer function models were determined from these exper
iments:

T3js) _ 0.55g-°-5* T4js) _ 3Ae~2As
T2is) ~ 2s + 1 his) ~ 2.1s + 1

id) What are the units of the gains and do they make sense? Is the reaction
exothermic or endothermic?

ib) Determine an approximate first-order-with-dead-time transfer function
model for T$(s)f T2(s).

(c) With better planning, could the model requested in (b) have been de
termined directly from the experimental data used to determine the
models given in the problem statement?

6.6. This question addresses dynamics of the mixing process in Figure Q6.6a,
which has a mixing point, a pipe, and three identical, well-mixed tanks.
Some information about the process follows.
(i) The flow of pure component A is linear with the valve % open; Fa =

KAv.
(ii) The flow of pure component A is very small compared with the flow

of B; Fa <$C Fr. Also, no component A exists in the B stream,
(iii) Delays in the pipes designated by single lines are all negligible,
(iv) The two materials have the same density, and xa is the volume percent

(or weight %).
(v) Fq is not influenced by the valve opening.

(a) An experimental process reaction curve is given in Figure Q6.6b for a
step change in the valve of +5% at time = 7.5 minutes.
(i) Discuss the good and poor aspects of this experimental data that

affect its usefulness for empirical modelling,
(ii) Determine the model parameters for a model between the valve

and the concentration in the third tank.
(b) In this question, you are to model the physical process and determine

whether the response in Figure Q6.6b is possible, i.e., consistent with
the fundamental model you derive.

(i) Develop the time-domain models for each process element in
linear (or linearized) form in deviation variables.

(ii) Take the Laplace transform of each model and combine into an
overall transfer function between v'(s) and x'A3is).

(iii) Compare the model with the data and conclude whether the fun
damental model and data are or are not consistent. You must
provide an explanation!
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FIGURE Q6.6

id) Mixing, delay, and series reactors; ib) process reaction curve.

6.7. The difference equation for a first-order system was derived from the con
tinuous differential equation in Section 6.4 by assuming that the input was
constant over the sample period At. An alternative approach would be to
approximate the derivative(s) by finite differences. Apply the finite differ
ence approach to a first-order and a second-order model. Discuss how you
would estimate the model parameters from a set of experimental data using
least squares.

6.8. Although such experiments are not common for a process, frequency re
sponse modelling is specified for some instrumentation (ISA, 1968). As
sume that the data in Table Q6.8 was determined by changing the fluid
temperature about a thermocouple and thermowell in a sinusoidal manner.
(Refer to Figure 4.9 for the meaning of frequency response.) Determine an
approximate model by answering the following:



id) Plot the amplitude ratio, and estimate the order of the model from this
plot.

ib) Estimate the steady-state gain and time constant(s) from the results in
{a).

ic) Plot the phase angle from the data and determine the value of the dead
time, if any, from the plot.
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TABLE Q6.8

Frequency Ampl i tude rat io Phase angle (°)

0.0001 1.0 - 1
0.001 0.99 - 7
0.005 0.85 - 3 2
0.010 0.62 -51
0.015 0.44 - 6 3
0 . 0 5 0 0 . 1 6 - 8 0

6.9. It is important to use our knowledge of the process to design experiments
and determine the range of applicability of the empirical models. Assume
that the dynamic models for the following processes have been identified,
for the input and output stated, using methods described in this chapter
about some nominal operating conditions. After the experiments, the nom
inal operating conditions change as defined in the following table by a
"substantial" amount, say 50 percent. You are to determine
id) whether the input-output dynamic behavior would change as a result

of the change in nominal conditions
ib) if so, which parameters would change and by how much
ic) whether the empirical procedure should be repeated to identify a model

at the new nominal operating conditions

Process
(all are worked examples)

Input
va r iab le

O u t p u t
va r iab le

Process variable that
changes for the new
nominal operat ing
cond i t i on

Example 3.1: Mixing tank Cao cA (Cao)j
Example 3.1: Mixing tank Cao CA F
Example 3.2: Isothermal CSTR Cao Ca T
Example 3.5: Isothermal CSTR Cao Ca (Cao)s
Section 5.3: Noninteracting mixing tanks Cao Ca (Cao)*
Section 5.3: Interacting levels Fo L 2 ( F 0 ) ,

6.10. Use Method II of the process reaction curve to evaluate empirical models
from the dynamic responses in Figure 5.17a. Explain why you can obtain
two models from one experiment.
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6.12. The graphical methods could be extended to other forcing functions. For
both first- and second-order systems with dead time, develop methods for
fitting parameters from an impulse response.

6.13. We will be using first-order-with-dead-time models often. Sketch an ideal
process that is exactly first-order with dead time. Derive the fundamen
tal model and relate the equipment and operating conditions to the model
parameters. Discuss how well this model approximates more complex pro
cesses.

6.14. Develop a method for testing whether the empirical data can be fitted using
equation (6.2). The method should involve comparing calculated values to
a straight-line model.

6.15. Both process reaction curve methods require that the process achieve a
steady state after the step input. For both methods, suggest modifications
that would relieve the requirement for a final steady state. Discuss the rela
tive accuracy of these modified methods to those presented in the chapter.
Could you apply your method to the first part of the transient response in
Figure 3.10c?

6.16. Often, more than one input to a process changes during an experiment. For
the process reaction curve and the statistical method:
id) If possible, show how models for two inputs could be determined from

such experiments. Clearly state the requirements of the experimental
design and calculations.

ib) Assume that the model between one of the inputs and the output is
known. Show how to fit the parameters for the remaining input.

6.17. For each of the processes and dynamic data, state whether the process
reaction curve, the statistical model fitting method, or both can be used.
Also, state the model form necessary to model the process adequately. The
systems are Examples 3.3,5.1, and Figure 5.5 (with n = 10).

6.18. The residual plot provides a visual display of goodness of fit. How could
you use the calculated residuals to test the hypothesis that the model has
provided a good fit? What could you do if the result of this test indicates
that the model is not adequate?

6.19. id) Experiments were performed to obtain the process reaction curves in
Figure 5.20a and b. How do you think that the results would change if
(1) The step magnitudes were halved? doubled?
(2) The step signs were inverted?
(3) Both steps were made simultaneously?

ib) Describe how the inventories (liquid levels) were controlled during the
experiments.

ic) Would the results change if the inventories were controlled differently?


