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5.1 n INTRODUCTION

Examples in the previous two chapters have demonstrated that physical systems,
which involve very different physical principles, can have similar dynamic behav
ior. The concept that a single model type can apply to a wide range of entities,
process plants, biological units, economic communities, and so forth provides the
basis for "systems" analysis. Thus, it is possible to acquire understanding of a
large number of systems from a thorough study of a much smaller number of basic
models. In this chapter we study some fundamental model structures that occur
frequently in process plants, along with their effects on dynamic behavior. This
experience will enable us to recognize the effects of process designs on dynamic
behavior.

First, the behavior of some simple, basic systems, such as first- and second-
order and dead-time systems, is summarized using the results from previous chap
ters, with some extensions. Second, the behavior of these simple systems in series
structures is determined. Third, the behavior of parallel structures of simple sys
tems is introduced. Fourth, the effects of recycle structures on dynamic responses
are demonstrated. The chapter concludes with an investigation of more complex
physical systems of special importance in the process industries: staged systems
and multiple input-multiple output systems.

In these sections, the manner in which the behavior of simple systems is al
tered by common process structures is derived for simple, idealized models but is
demonstrated for important process examples involving levels, heat exchangers,
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chemical reactors, and distillation towers. This coverage demonstrates that the
engineer must master both the physical principles of specific processes and
systems analysis techniques to determine the dynamics of complex processes
quantitatively.

5.2 m BASIC SYSTEM ELEMENTS
The coverage of process dynamics begins with the simplest elements, which are
often combined to model more complex systems. Since examples of most of these
elements were included in previous chapters, the coverage here is concise. The ba
sic model structure for each element is first defined, and several physical examples
are given, with the system input designated by X and the output by Y. The chem
ical process principles should be apparent to the reader, while the electrical and
mechanical models are based on KirchhofPs and Newton's laws, and the reader
is referred to Ogata (1992) and Weber (1973) for derivations. The graphical and
analytical results of common inputs for several basic systems are summarized in
Figure 5.1; the presentation of results in such a figure seems to have originated
with Buckley (1964). Only the amplitude ratio is presented here, because more
extensive frequency response analysis is presented in Chapter 10, where the im
portance of the phase behavior on stability is demonstrated and applied in control
system analysis.
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FIGURE 5.1

Dynamic responses for basic process-modelling elements.

Log (frequency)



First-Order System 137
First-order systems occur as the result of a material or energy balance on a lumped
(i.e., well-mixed) system, as demonstrated in Examples 3.1 and 3.6. Some further
examples are given in Figure 5.2. The differential equation and transfer function
for a first-order system are

Basic System Elements

rtm + m-KW G(,)=yW K,
dt Xis) xs + 1 (5.1)

The step response is monotonic, with its maximum slope at the time of the
step, and the time to reach 63.2 percent of its final change is one time constant.
The final steady-state change is equal to KpiAX).

Step response: Y\t) = KpiAX)i\ - e~t/T) (5.2)

An impulse input occurs over a negligible time and transfers a finite amount
into the system. For example, rapidly introducing a small amount of tracer into
a stirred tank emulates a perfect impulse. The impulse response shows an im
mediate increase at the time of the impulse, which for the idealized stirred-tank
example would mean that the concentration would change instantly by (mass of
tracer)/(volume). After the impulse (C), the system follows an exponential path in

Balance Input Output KP X

Component
material

GAo cA F
F+Vk

V
F+Vk

Energy 1.0

Overall
material

1
O.SkLr0-5 O.SkLr05

E0 ci E
Current 1.0 RC

k1 zo
3 : z F o r c e zo 1.0 / / * '

FIGURE 5.2

First-order processes (E = voltage, z = position, k' = spring constant, and
/ = friction coefficient).
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return to its final condition.

Impulse response: Y\t) = -e-"Tx (5.3)

For the first-order system, the amplitude ratio is never greater than the process
gain Kp, and it decreases monotonically as the frequency increases:

AR = \G(jco)\ =
K,\Y(ja>)\ =

\X(jco)\ J\+co2x2
(5.4)

Second-Order System
The second-order system occurs when two first-order or one second-order ordinary
differential equation is required to model the dynamic behavior. Some examples
are given in Figure 5.3. The transfer function for the second-order system with a
gain in the numerator (and no zeros) can be written as

with

d t 2 d t

G« = J&i = j*l+2$TS+\

<X\,2
- f ± V ^ T [

(5.5)

-AO"

A->B

Balance

Component
material

I n p u t O u t p u t

c a o G B

KP

Vk
F+Vk ^ B

2£t

* A + * B

Zs\ •i----^ ■ Energy

T i . Overall
material

[see question 5.2]

0.5kLr0-5 [0.5kLs-°-5\
2 t

L R
o-fUP—VA-

' 0 c1 E
Current 1.0 LC RC

A —f *'
m\ z

f

Force M k ' m / k ' f / k '

FIGURE 5.3

Second-order processes (E = voltage, z = position, k' = spring constant, / = friction
coefficient, h = force, m = mass, rA = V/(F + Vk), and tb = V/F).



The parameter f is termed the^damping coefficient, and 0^,2 are the two roots of 139
the characteristic polynomial, which determine the exponents of the time-domain m^ams^^mssimmum
output function. When the damping coefficient is less than 1.0, the system is Basic System Elements
termed underdamped, the roots of the characteristic polynomial are complex, and
the system will have periodic behavior for a nonperiodic input. For example, the
nonisothermal reactor system in Section 3.6, which exhibits oscillations for a
step input, has a damping coefficient of 0.15. When the damping coefficient is
greater than 1.0, the system is termed overdamped, the roots of the characteristic
polynomial are real, and the system will have nonperiodic responses to nonperiodic
inputs. Finally, the series reactor system in Example 3.3 has a damping coefficient
of 1.0, which indicates real, repeated roots; this type of system is termed critically
damped.

Two entries are given in Figure 5.1 for second-order systems; one is for an
overdamped system, and the other is for an underdamped system. The step response
for the overdamped system initially at steady state is monotonic with an initial slope
of zero and an inflection point. Note that the underdamped system experiences
periodic behavior even for this simple input.

OVERDAMPED STEP RESPONSE (£ > 1).

Y = KpAX 1 + -
\ x2-x\ x2 - Xi )

(5.6)

CRITICALLY DAMPED STEP RESPONSE (£ = 1).

Y = KpAX
( ' ♦ ; M

1 - 1 + 1 e - t b ( 5 . 7 )

UNDERDAMPED STEP RESPONSE (£ < 1).

ax gl/t . /yi-s2 AY = KDAX - Kv t _e-*tlx sin ( v t + 4> J
(5.8)

. I J \ - k 2 \
<p = tan

OVERDAMPED IMPULSE RESPONSE (£ > 1).

Y = C [ - ) ( 5 . 9 )
\ T 1 - T 2 x \ - x 2 J

CRITICALLY DAMPED IMPULSE RESPONSE (£ = 1).

Y = ^ l e - t / T ( 5 . 1 0 )
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Y = V̂T̂J- :e-Wr sin V^i : (5.11)

Both the step and impulse responses for a second-order system have initial re
sponses that are more gradual than for a first-order system. The overdamped system
approaches its final value smoothly, while the underdamped system experiences
oscillations.

The amplitude ratio of the frequency response is monotonically decreasing
for an overdamped system and begins to deviate substantially from Kp around
the frequency equal to 1/t. The amplitude ratio for second-order systems with
a damping coefficient below 0.707 exceeds Kp over a limited frequency range
around 1/r. This resonance effect results from the inherent oscillatory tendency
of the system reinforcing the input sine oscillations.

AR = \G(jco)\ = K,\Y(jco)\ =
\X(jco)\ y/(]-co2x2)2 + (2cox^)2

(5.12)

Dead Time
The dead time or transportation delay was introduced in Example 4.3 for plug flow
of liquids and can also occur for transportation of solids along a conveyor belt. It
was shown to have the following model:

Y(s)Y(t) = X(t - 0) G(s) = X(s)
= e-6s (5.13)

The step response, impulse response, and amplitude ratio can all be easily deter
mined, because the output is the input translated in time by 0. For example, this
leads to the conclusion that the amplitude ratio is equal to 1.0 for all frequencies,
which can be demonstrated mathematically by

AR = | g - ^ i -| = |cos (co9) - j sin (co0)\ = y cos2 (co9) + sin2 (toO) - 1
(5.14)

The dead time can be approximated by a transfer function that replaces the
exponential in the Laplace variable (e~9s) with a ratio of polynomials in s. This
approach is referred to as a Pade approximation, which is presented in Appendix
D. In this book, we will not use dead time approximations; i.e., we will model the
dead time as an exact delay as given in equations (5.13).

The importance of dead time to feedback control can be understood by con
sidering an example such as steering an automobile. With dead time, the automo
bile would not respond immediately after the change in steering wheel position.
Clearly, such an automobile would be difficult to drive and would require a skilled
and patient driver who could wait for the effect of a steering wheel change to occur.

Integrator
The integrator is a special type of first-order system; a process example of an
integrator is a level system, which is modelled based on an overall material balance



to give

pA— = pF0- pFx (5.15)

In many cases the inlet and outlet flows do not depend on the level (unlike the tank
draining Example 3.6). When no causal relationship exists from the level to the
flow, the model has the following general form:

dY'r„_ = x<#/u") xh = holdup time

_ _ 1
X(s) xHsG(s) = —— =

(5.16)

(5.17)

The important difference between the integrator and the first-order system in
equation (5.1) is the lack of dependence of the derivative on the output variable
(Y'y, that is, dY'/dt is independent of Y'. This results in a pole at s = 0 in the
transfer function. The analytical expression for the output of the integrator is

Y'(t) = / '
Jo X'(t')dt' (5.18)

A system like this simply accumulates the net input: thus, the name integrator. If
the deviation in the input remains nonzero and of the same sign, the magnitude
of the idealized model output increases without limit as time increases toward
infinity. For a step input,

Step response: Y' = A X
xh '

(5.19)

The impulse response also demonstrates that the system integrates the impulse
(area under the impulse function), and then the output remains constant at its altered
value when X'(t) returns to zero. The value of the impulse response is Y' = C/xh.

The amplitude ratio can be determined to be

Frequency response: AR = \G(jco)\ =
1 = -coj

xHco2XHJCO

1
xHco

(5.20)
As the frequency decreases, the amount accumulated by the integrator each half
period (which is related to the output amplitude) increases.

Self-Regulation
The unique behavior of the integrator demonstrates that not all processes tend to
a steady state after input changes cease and all inputs are constant. To clarify the
distinction, the term self-regulation is introduced here.
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For a process that is self-regulatory, the output variables tend to a steady state after
the input variables have reached constant values.

Many processes encountered to this point have been self-regulatory, including the
chemical reactors, heat exchanger, and mixing tanks. Self-regulatory processes are
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CA0 <w
do

r . r' c m I c o u t

generally easier to operate because they tend to a steady state. Naturally, the final
steady state might be acceptable or not depending on the magnitude and direction
of the input changes, so that process control is often applied to self-regulatory
processes.

The self-regulation in a process can be identified by analyzing the dynamic
model to determine if the value of the output variable influences its derivative.
For example, the heat exchanger in Example 3.7 has inherent negative feedback,
because an increase in the output (outlet temperature) causes a decrease in a model
input term -(F/V + UA/VpCp)T, which stabilizes the system by decreasing
the derivative:

d T ( F U A \ ( F U A \
vPc„ -

External inputs
VpCp,

Inherent negative
feedback

(5.21)

Some processes have inherent positive and negative feedback; for example,
the nonisothermal chemical reactor with exothermic chemical reaction is

dT_
dt \V ° VpCp cm) \V VpCpJVpCp

External inputs
VpCp

Inherent negative
feedback

+ j-AHnn)kQe-EfRTCk
pCP

Inherent positive
feedback

The reactor has a negative feedback term in its energy balance, the same as for the
heat exchanger. However, the exothermic chemical reaction contributes positive
feedback, because the input term i-AHrxnkoe~E/RTCA/pCp) increases when the
output temperature increases. For the parameter values in Table C.l, case I, the
inherent negative feedback in the process dominates, and the process achieves
a steady state after a step input. The positive feedback is substantial, however,
which leads to the periodic behavior and complex poles. Additional comments on
the behavior and stability of processes are given in Appendix C.

In contrast, non-self-regulatory processes do not tend to steady-state operation
after all inputs have reached constant values. Thus, even a small (and constant)
input change from an initial steady state can lead to large disturbances after a long
time. A non-self-regulatory process can be identified from its dynamic model; the
value of the output variable does not influence its derivative, as shown in equation
(5.15), so that the derivative can have a constant (nonzero) value over a long
time. Without intervention, a non-self-regulatory process can experience very large
deviations from desired values; therefore, all non-self-regulatory processes require
process control. The dynamics of typical non-self-regulatory processes are covered
in Chapter 18, along control technology tailored to their special requirements.

In summary, many different systems obeying the models of these basic el
ements behave in a similar manner. After the parameters have been determined,
their behavior for specified inputs is well understood. Thus, the experience learned
from a few examples can be extended, with care, to many other systems.
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A structure involving a series of systems occurs often in process control. As dis
cussed in Chapter 2, this structure can occur because of a processing sequence—for
example, feed heat exchange, chemical reactor, product cooling, and product sep
aration. Also, a control loop involves a final element (valve), process, and sensor
in a series, as will be more fully discussed in Part III. Therefore, the understanding
of how series structures behave is essential in the design of chemical plants and
process control systems.

Series Structures of
Simple Systems

Noninteracting Series
There are two major categories of series systems, and the noninteracting system
is covered first. It is worthwhile considering the mixing system, which conforms
to the block diagram at the bottom of Figure 5Aa, in which each intermediate
variable has physical meaning.

d C
Va±2± = FC'-FC'

V

dt
dC'A

'AO A l

dt
A2 = FC'Al - FC'A2

Note that the model equations have the general form
dY!

x t ^ - K t Y l . y - Y ! for / = 1,..., n with Yq = X'

(5.23)

(5.24)

(5.25)

Any system modelled with equations of this structure constitutes a noninteracting
series system. Important features of the system follow from this model.

1. Only y„_i and Yn (not Yn+\) appear in the equation for dYn/dt.
2. Following from (I), the downstream properties do not affect upstream prop

erties; in the example, the concentration in tank 2 does not affect the concen
tration in tank 1 but does affect tank 3.

ib)

X{s)
Gx{s)

W
G2{s)

Y2{s)
G3(*) ^

ia)
FIGURE 5.4

Series of processes: (a) noninteracting; ib) interacting.
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3. The model for the general noninteracting series of first-order systems can
be developed by taking the Laplace transform of each equation (5.25) and
combining them into one input-output expression. For a series of systems
shown in Figure 5.4a, each represented by atransfer function G, is), the overall
transfer function

Yn(s)
X(s)

n-\
= Gn(s)Gn.l(s). • • Gxis) = ]*] Gn-iW (5-26)

i = 0

For n first-order systems in series, this gives
« - i

Y«JS)
Xis)

Y\K»-i
i=0

n-1

Y[(Tn-iS + 1)
i=0

with Kn-i and xn--, for the individual systems

(5.27)
The gains and time constants appearing in equation (5.27) are the same as the
values for the individual systems, as in equation (5.25). Thus, the model of
interacting systems can be determined directly from the individual models.

4. If each system is stable (i.e., r,- > 0 for all i), the series system is stable. This
follows from the important observation that the poles (roots of the character
istic polynomial) of the series system are the poles of the individual systems.

Now the dynamic response of a series of noninteracting first-order systems can
be considered. Since so many possibilities exist, the simplest case of n identical
systems, all with unity gain, is considered. The response to a step in the input,
X'(s) = 1/5, is plotted in Figure 5.5. Note that the time is divided by the order of
the system (i.e., the number of systems in series), which time-scales the responses
for easy comparison. We note that the shape of the response changes from the now-
familiar exponential curve for n — 1. As n increases, the response begins to have
an apparent dead time, which is the result of several first-order systems in series.
For very large n, the output response has a very steep change at time equal to nx.
Thus, we conclude that the series of identical noninteracting first-order systems
approaches the behavior of a dead time with 0 % nx for large n. Again looking
ahead to feedback control, a system with several first-order systems in series would
seem to be difficult to control, for the same reasons discussed for dead times.

A second observation is that the curves all reach 63 percent of their output
change at approximately the same value of t/nx\ this will be exploited later in
the section. Finally, we note that the system is always overdamped, because the
transfer function has n real poles, all at — 1/r.

The amplitude ratio of the frequency response can be determined directly from
the transfer function in equation (5.27) to be

AR = \Yn(jCO)\
\X(jco)\

= \G(jco)\ = [Y[Ki 1
i = \ .VT+ (02X2 ) "

(5.28)

The amplitude ratio is always less than or equal to the overall gain, and it decreases
rapidly as the frequency becomes large. Amplitude ratios for several series of
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FIGURE 5.5

Responses of n identical noninteracting first-order systems with K = 1
in series to a unit step at t = 0.

identical first-order systems are shown in Figure 5.6; again, the frequency is scaled
to the order of the system to provide time-scaling.
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Interacting Series
The second major category of series systems is interacting systems. Again, it is
worthwhile considering a physical example, this being the level-flow process in
Figure 5Ab. Assuming that the flow through each pipe is a function of the pressure
difference, the model can be derived based on overall material balance for each
vessel to give

dLi
Ai—L = Fi_ldt Ft

= Kj-\(L(-i — Li) - Ki(L, — Li+\) (5.29)

because Fi = K[(Pi — P,+i) for the linearized system, and the pressures are
proportional to the liquid levels. These model equations have the following general
form for a series of two interacting first-order systems:

dY'
Hl-j± = X'-KliY{-Yl)

dY'
(5.30)

(5.31)

Many important physical systems, including that in Figure 5.4fc, have struc
tures described by equations (5.30) and (5.31); thus, these equations are considered
representative of interacting systems for subsequent analysis. Some important fea
tures of these systems follow from their model structure:
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Frequency responses of n identical noninteracting first-order systems
with K = 1 in series.

1. The variables Yn-\, Yn, and Yn+i appear in the equation for dYn/dt.
2. Following from (1), the downstream properties affect upstream properties; for

example, the exhaust pressure (Pj) influences both levels in Figure 5.4b.
3. The model for the general interacting series system of first-order systems can

be developed by taking the Laplace transform of equations (5.30) and (5.31)
and combining them into one input-output expression, which results in poles
of the interacting system that are different from the poles of the individual
systems.

The procedure for deriving the overall transfer function is shown in some
detail, because the result is somewhat more complex than for a noninteracting
system and because the procedure can be applied to systems of differing structures.
First, the Laplace transform of equation (5.30) can be rearranged to give (with the
primes deleted)

Ylis) = -^TXis) +xns + 1

1 J J

—Y2(s) with xY\ = TT
x Y \ s + 1 K \

(5.32)

The parameter zy\ is the time constant for the first system when considered indi
vidually. The Laplace transform of the second equation is

xY2sY2(s) = ^riYiis) - Y2(s)] - [Y2(s) - Y3(s)] with xY2 = Q (5.33)
t i 2 K 2

Again, the parameter xy2 is the time constant for the second system when con
sidered individually. The behavior of the combined system can be determined by



substituting equation (5.32) into (5.33) to give, after some rearrangement,
(xYls + \)

Y2(s) =
XY\XY2S2 + f XY\ + XY2 + xY\ —- j

l /K2

Y3(s)
s + l

(5.34)
+

xy\xY2s2 + [ xY\ + xY2 + xY\ —- ) s + 1
( K2)

X(s)

Several important conclusions on the effect of the series structure on the
dynamic behavior can be determined from an analysis of the denominator of the
transfer function. The time constants of the interacting system (x\ and x2), which
are the inverses of the poles, can be determined by solving the quadratic equation
for the roots of the characteristic polynomial to give

«1,2
(

xy\ + Xyi + Xy\ * l \ 2xy\ + Xyi + xy\ — 1 - 4rn xY2

2xy\Xy2
(5.35)

Four characteristics of the dynamics of this type of series system are now estab
lished. First, the possibility of complex poles is determined to establish whether
periodic behavior is possible. The expression within the square root in equation
(5.35) can be rearranged to give

(

K A 2 A
xyi + xyi + xYi— I —4xy\Xy2

— (Xy\ — Xy2) + Xy 2xy\ +2xy2 + xy\
(5.36)

> 0

Since both terms in the right-hand expression are greater than zero, the entire
expression is greater than zero, and complex poles are not possible for this system.
Therefore, periodic behavior cannot occur for nonperiodic inputs, such as a step.

Second, the stability of the process can be determined from equation (5.35).
Note that the numerator has the form —a ± (a2 — b)05, with a and b both positive.
Therefore, the poles for both signs of the root are negative, and the system is stable.

Third, the "speed" of response of the interacting series system can be compared
with the individual system responses. Since the poles are real, the characteristic
polynomial in equation (5.34) can be written in an equivalent form as

(xis + l)(x2s + 1) = X\X2S2 + (X[ + x2)s + 1 (5.37)

Equating the coefficients of like powers of s in equations (5.34) and (5.37) gives

T\x2 = xy\Xy2 and X[ + x2 = xY\ + xY2 + Xyi K2 (5.38)

Therefore, the sum of the time constants for the overall interacting system is
greater than the sum of the individual systems. In other words, the interacting
system is "slower," due to the interaction, than it would have been if the systems
were noninteracting.
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Fourth, equations (5.38) show that the product of the time constants is un
changed but the sum is greater. Therefore, the difference between the interacting
system time constants (tj - T2) is greater than the difference between the individ
ual time constants (xyi - xy2)', that is, one time constant begins to dominate. This
conclusion can be demonstrated by rearranging equations (5.38) to give

(xi - x2)2 = (xY\ - xY2)2 + xYi—[ 2xY\ + 2xY2 + xY\
K 2 \ K2)

(5.39)

Since the noninteracting series system has been shown to have all real poles,
the dynamic responses of an interacting system of first-order systems have many
of the same characteristics as those of a noninteracting system; that is, they are
stable and overdamped.

The previous results for interacting systems are applicable to (only) those systems
that conform to the model; in addition to having variables F„_i, Y„, and Y„+\ appear
in the equation for dYn/dt, the coefficients of each linearized term must conform to
the structure and range of values in equations (5.30) and (5.31).

Many systems have the same model structures but different ranges for the
values of the parameters. If the type of system is not obvious from the structure of
the equations and the values of the model parameters, the model can be analyzed
using the procedure just applied to the equations (5.30) and (5.31) to determine
important characteristics of its dynamic behavior.

Noninteracting Series with Dead Time
As will become more apparent in the next chapter, we often use first-order-with-
dead-time models to approximate more complex systems with monotonic step
input responses. Therefore, noninteracting series of first-order-with-dead-time sys
tems are considered to conclude this section. The direct application of equation
(5.26) results in

Y(s)
Xis)

n-\ n*,)exp(-J>s
= Y\Gn-iis) = w=l 1=1 with d (s) =

1=0
f\(XiS + 1)

XjS + 1

1=1

(5.40)
This overall transfer function provides the basis for the following equations, which
give values for key parameters of a noninteracting series of first-order-with-dead-
time systems.

n n
Exact relationships: K - (5.41a)

Approximate relationship:
n

'63% » £(0/ + Tt) (5.41ft)



The results for the overall gain and dead time follow directly from equation (5.40).
The approximation for the time for the output response to a step input to reach
63 percent of its final value, t&%, is based on fitting an approximate model to the
response of the series system, using the method of moments. The derivation of
this expression is provided in Appendix D. The relationships in equations (5.41)
are useful for quickly characterizing the approximate behavior of a noninteracting
series system from the individual systems; comparison to solutions of noninter
acting systems (e.g., Figure 5.5) shows that the expression for t&% is a reasonable
approximation but not exact.
EXAMPLE 5.1.
Four first-order-with-dead time systems, with parameters in the following table, are
placed in a noninteracting series. Describe the output response of this system to
a step change in the input to the series at time = 2.
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System 1 2 3 4
Dead time, 0 0.40 0.90 1.2 1.70
Time constant, r 1.5 3.3 5.2 0.95
Gain, K 1.0 0.25 3.0 1.33
msmmm^mmmi^mi0smmm^immm^^Mmm!mm\

The results in this section on noninteracting systems indicate that the output re
sponse will be an overdamped sigmoid. Equations (5.41) can be used to estimate
key values of the response. Note that the input occurred at time = 2, so that the
points indicated on Figure 5.7 are based on the following results as measured
from time = 2.

a:, = 1.0 0 = 4.2 (after step) J^(0 + r) = 15.15 .-. t63% & 15.15 (after step)

The overall response is compared with the approximation in Figure 5.7, which
demonstrates the usefulness of the approximation for t&%, because it gives an
approximate "time scale" for the response. However, many sigmoidal curves could
be drawn through the two points in the figure. The entire curve can be determined
through analytical or numerical solution of the defining equations.

EXAMPLE 5.2. Input-output response.
Two series systems, each with four elements, involve only transportation delays
and mixing tanks. A step change is introduced into the input feed composition of
each system with the flow rates constant. Determine and compare the dynamic
responses of the output for each system. Since there is no chemical reaction, the
systems have a gain of 1.0 and dynamic parameters given in the following table.

Ox X\ 02 r2 *3 T3

Case 1 0 2 2 0 0 2
Case 2 0 2 2 2 1 0

# 4 * 4
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FIGURE 5.7

35 40

Dynamic response of series processes in Example 5.1 for a unit step at
time = 2.

The solution can be developed in several ways. The most general is to derive the
overall input-output transfer functions for these systems.

Y4(s) = Gds)Y3is) = • • ■ = G4(s)G3(s)G2(s)Gi(.s)X(s)
y 4 ( j ) i . Q g - f fl i + f t + f t + f t ) *
~X(S) ~ iTiS + \)iT2S + 1)(T35 + 1)(T4* + 1)

l.Qg-4'~ (2j + \)i2s + 1)

Since the overall transfer functions are the same for the two systems, their dynamic
input-output behaviors are identical. This is verified by the transient responses of
the two cases for a step input at time = 2 in Figure 5.8, with each variable Ytit) on
a separate scale.

The responses in Figure 5.8 show that two systems can have the same input-output
behavior with different values for intermediate variables.

In conclusion, the analysis in this section has demonstrated that both noninter
acting and interacting series of n first-order systems can be modelled by a transfer
function with a characteristic polynomial of order n. Much about the dynamic re
sponses of the series systems can be determined from the models of the individual
systems. The results are summarized in Table 5.1.

The series systems in this section provided additional reinforcement for the im
portance of transfer function poles. The strongest general conclusions were based
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FIGURE 5.8

Dynamic responses for series system in Example 5.2 to a unit step at time = 2.

TABLE 5.1

Properties of series systems with first-order elements
(responses between input, X, and output, Y„)
Individual first-order Noninteracting
s y s t e m s s e r i e s s y s t e m s

Interacting series system,
equations (5.30) and (5.31)

n first-order systems
Each is stable
Time constants, t/

km
Step response
Frequency response

nth-order system
Stable, not periodic
Time constants are zit
i = 1,..., n

to * E x>
Overdamped, sigmoidal
AR < Kp for all co

nth-order system
Stable, not periodic
Time constants are not t/'s. They
must be determined by solving the
characteristic polynomial.
t&>% > ]CT«
Overdamped, sigmoidal
AR < Kp for all co

on the manner in which the poles of the overall system were or were not affected by
the series structure. These conclusions concerned stability and the related property
of periodic behavior. Since these generalizations dealt with properties completely
determined by the poles, they are independent of the numerators in the transfer
functions. In fact, the generalizations on stability and periodicity can be extended
to any series transfer functions with denominators expressed as a polynomial in s.
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However, the values of the poles do not provide general conclusions for the
time-domain responses to step and sine inputs. Since both the numerator and
denominator of the transfer function influence the dynamic behavior, the more
specific results on dynamic responses are valid only for systems consistent with
the assumptions in the derivations—that is, with a constant for the numerator
of each series transfer function element. In particular, Figures 5.4 and 5.5 and all
conclusions on the step response and amplitude ratio are specific to systems whose
component elements have constant numerators. Finally, such strong conclusions
for an overall system, based on the individual elements, are not always possible,
as demonstrated by the structures considered in the remainder of this chapter.

- t & r

A - ^ B

FIGURE 5.9
ib)

Examples of parallel systems in
chemical engineering: (a) heat
exchanger with bypass and ib) chemical
reaction system.

Xis)-

FIGURE 5.10

Example of a parallel structure
involving two systems.

5.4 m PARALLEL STRUCTURES OF SIMPLE SYSTEMS
Parallel paths between a system input and its output can occur in processes, for
example, the heat exchanger with multiple fluid flow paths in Figure 5.9a and
the multiple reaction pathways in Figure 5.9b. Systems with parallel paths can
experience unique dynamic behavior that can have a strong effect on control per
formance. Therefore, engineers should understand the process structures leading to
parallel structures giving good and poor dynamic behaviors. The basic concepts of
parallel systems are introduced in this section to explain the reasons for the unique
dynamic behavior, and detailed process examples are presented in Appendix I.

A simple structure that demonstrates the important features of parallel systems
is shown in Figure 5.10. The system has two paths between the input variable, X,
and the output, Y. The overall model relating input and output can be determined
using block diagram algebra.

Ylis) = G]is)Xis)
Y2(s) = G2(s)X(s)

Y(s) = Y{(s) + Y2(s)
The three equations can be combined to give

Y(s)
X(s)

= G1(s) + G2(.y)

(5.42)
(5.43)
(5.44)

(5.45)

For the situation in which each process is a first-order process, G,- (s) = Ki/(xis +
1), the model becomes

Y(s) £1 + K2
X(s) (xxs + l) " (x2s + l)

Equation (5.46) can be rearranged to have a common denominator to give
Y(s) = Kp(z3s + l)
X(s) (xlS + l)(x2s + 1)

(5.46)

(5.47)

with Kp = (KX+K2)
X3 = (Klx2 + K2xl)/(Kl +K2)

We note that the transfer function model in equation (5.47) has a polynomial in the
Laplace variable s in the denominator, as has occurred in many previous models;
the denominator terms result from taking the Laplace transform of derivatives in



the dynamic models. Since the stability and periodicity of the output Y(t) depend
on the roots of the denominator, we conclude that the parallel structure does not
alter these important aspects of dynamic behavior.

In addition, this model has a new feature in the model, a polynomial in s in the
transfer function numerator that results from the parallel structure. To investigate
the effect of the parallel structure on dynamic behavior, the step response of the
system in Figure 5.10 and modelled by equation (5.47) will be determined. The
time behavior can be determined by setting X(s) = AX/s for a step change and
taking the inverse Laplace transform using entry 10 in Table 4.1 (with a = z3).
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Y'(t) = KpAX M + ^—
x\ — x3 _t/ x2 — x3 _0 ' / ' I 0

X\ x2-x\
t/r2\ (5.48)

To enable us to plot a typical system, the following arbitrary parameter values are
inserted into equation (5.48): K = 1, AX = 1, x\ = 2, and x2 = 1. The responses
are plotted for several values of the parameter x3 in Figure 5.11.

Key characteristics of the responses depend on the value of x3.

For negative values of 13 the step response changes initially in the direction opposite
from the final steady state! This behavior is termed an inverse response and results
from the parallel path.

1.5

3o

1 -

0 .5 - /

-0.5

1 1
4

1 1 1 1 l 1 1

- / / 3

2

1

0

1

-1

-2

1
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Time
10

FIGURE 5.11

Responses for a sample parallel system to a unit step at t = 0 in Xis);
the model is Yis)/Xis) = Gis) = iz3s + l)/(2s + l)(s +1), with the

value of T3 shown for each curve.
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This behavior can be explained by considering the system in Figure 5.10, which
•shows that the output is the sum of two effects. When one path has fast dynamics
and a negative gain, the process output initially decreases; however, if the second
path has slower dynamics but a positive gain of larger magnitude, the ultimate
output response will be positive. Thus, an inverse response occurs.

Figure 5.11 also shows that the output can have transient values greater than
its final value when x3 > X\ and x3 > x2. This behavior is termed overshoot and
results from the parallel path. This behavior can be explained by considering the
system in Figure 5.10. When one path has fast dynamics and a large positive gain,
the process output initially increases a large amount; when the effects of the second
slower path are negative but smaller in magnitude, the output decreases from its
maximum, but remains positive. Thus, the overshoot occurs although the process
is overdamped, i.e., nonperiodic.

The importance of inverse response or overshoot can be recognized by thinking
about how you would drive an automobile that had steering dynamics with either
of these behaviors. Only a skilled driver could maintain the vehicle on the road, and
no driver could achieve good performance. Therefore, the design engineer should
seek to avoid processes that experience these behaviors through process equipment
selection. Note that the dynamics are monotonic for many systems in Figure 5.11
when x3 ^ 0, so that only parallel structures with specific ranges of parameters
yield these unique and usually undesirable behaviors. In Appendix I, some realistic
parallel-path process examples are presented that experience interesting and im
portant dynamic behavior. Approaches to improve dynamic performance through
control are discussed throughout the book.

In summary, parallel paths exist in many processes due to either complex
interconnecting flow structures of individual systems or due to parallel effects
within a single process. Since the poles are unaffected by a parallel structure,
stability and damping of the overall system is not affected. This can be seen from
equation (5.47), in which the denominator of the overall transfer function has
the poles of the individual transfer functions. However, the parallel paths can
have a significant effect on the dynamic behavior of the system, and the most
complex behavior—overshoot or inverse response—occurs when parallel paths
have significantly different speeds of response, so that parallel responses from an
input affect the output at different times. Also, the approximate time to reach 63
percent of the output change for a step input is affected by the numerator, and it
is not simply the sum of the individual time constants. The behavior of parallel
systems of first-order individual systems is summarized in Table 5.2.

The behavior presented in this section can cause some difficulty in termi
nology, since a stable overdamped system (f > 1) is usually thought to have a
monotonic response to a step input. This is true when the transfer function numer
ator is a constant, but it is not necessarily true when the numerator is a function of
s. The potential dynamic behavior is summarized in Table 5.2.

Poles Response to nonperiodic input Monotonic response to step

Complex
Real

Periodic
Nonperiodic

Not possible
Possible, depends on numerator



TABLE 5.2

Properties of parallel systems with first-order elements
Individual first-order
systems
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Each is first order
Each is stable
Poles are 1/r,-

Step response
Frequency response

Parallel system

Order of the highest order in a parallel path
Stable, not periodic
Poles are 1/r,-, / = l,...,n
hi% 7^ St,-
Can be monotonic or experience overshoot or inverse response
Amplitude ratio can exceed steady-state process gain (for some
frequency range)

The emphasis on complex dynamic responses in this section does not indicate that
all systems with numerator zeros give unfavorable dynamics such as large overshoot
or inverse response.

The engineer can analyze the physical process for possible parallel paths
with different dynamics to identify potentially complex dynamics and then use
quantitative methods to determine whether the behavior may cause difficulty for
control. Each input must be considered separately, because the characteristics of
the output dynamic response differ for different inputs.

5.5 m RECYCLE STRUCTURES

Recycle structures are used often in process plants, to return valuable material for
reprocessing and to recover energy from effluent streams through heat exchange.
Such interconnections, termed process integration, are often cited as potential
causes of difficulty in plant operations in spite of their advantages in the steady
state; therefore, it is important to understand the effects of recycle on process
dynamics. This structure will be introduced through a process example and then
will be generalized.
EXAMPLE 5.3. Reactor with feed-effluent heat exchanger.
The process design shown in Figure 5.12 has a feed-effluent heat exchanger that
can be used for a chemical reactor with a high feed temperature and a need for
cooling the product effluent stream.
Formulation. The analysis begins with the transfer functions of the following indi
vidual input-output relationships, represented in the block diagram in Figure 5.13.

Tiis) = GH]is) = Kh\
To is ) " " " ' zms + \

T3is) = T,is) + T2is)

T2js)
T4is)
T4is)

= GH2is) =

= GRis) =

Kh2
zH2s + 1
Kr

(5.49)

his) "N" zRs + l
The block diagram shows the output of the reactor returning to influence an input

U-

FIGURE 5.12
Reactor with feed-effluent heat

exchanger in Example 53.

w
Gmis)

hW s 'h<s)
GRis)

I4fi)
i

T2is)

GH2is)

FIGURE 5.13

Block diagram of reactor-exchanger in
Example 5.3.



156

CHAPTERS
Dynamic Behavior of
Typical Process
Systems

to the reactor. This is feedback that has been introduced into the process by a
recycle of energy. To determine the behavior of the integrated system, the overall
input-output transfer function must be determined using block diagram algebra.

T4is) = GRis)T3is) = GRis)[Tiis) + T2is)]
= GRis)[GH2is)T4is) + Gmis)T0is)]

T4js) = GRis)GHljs)
Tois) 1 - GRis)GH2is)

(5.50)

It is immediately apparent from the overall transfer function that recycle has
fundamentally changed the behavior of the system, because the characteristic
polynomial in equation (5.50) has been influenced and the poles of the overall
system are not the poles of the individual units. Thus, the stability of the overall
system cannot be guaranteed, even if each individual system is stable!

To investigate the behavior of a recycle system further, models are defined for
each of the individual processes in Figure 5.12. The following transfer functions are
very simple, but the recycle system with these models experiences characteristics
typical of realistic processes.

GRis) = 10*+ 1 G„ds)=0A0

With recycle:
Without recycle:

GH2is) = 0.30
GH2is) = 0

The gains are dimensionless (°C/°C), and time is in minutes. The recycle heat
exchanger model, Gmis), represents the effect of the recycle stream temperature
on the reactor inlet temperature. If no recycle existed, i.e., if the effluent did not
exchange heat with the reactor feed, T4is) would have no effect on T3is), so that
GH2is) would not exist, which is represented by GH2is) = 0. These transfer function
models can be substituted into equation (5.50) to determine the overall effect of
a change in the process inlet temperature, Tois), on the reactor temperature with
and without recycle.

With recycle:

T4js)
Tois)

\\0s + \)
(0.40) 12

1 -
VlOs + lJ (0.30)

100* + 1 (5.51)

Without recycle (G//2(.v) = 0):
T4js)
Tois)

= GH]is)GRis) = 1.2
10*+ 1 (5.52)

Results analysis. The foregoing expressions and the dynamic responses for
a step input of 2°C in T0 in Figure 5.14 show the dramatic effect of recycle on
the steady-state gain and time constant; both increase by a factor of 10 due to
recycle. This change can be understood by analyzing the interaction between the
exchanger and reactor in the recycle system during a transient; an increase in T0
causes an increase in T3 and then T4, which causes an increase in T2, which causes
an increase in T4, and so on; in short, the output change is reinforced through the
recycle (feedback) exchanger. The system is still stable and self-regulatory, be
cause of the dominant inherent negative feedback for the parameter values in this
example, but the recycle has created an inherent positive feedback in the process,
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FIGURE 5.14
Dynamic responses for a 2°C step in T0 at time = 0 with and without recycle.

(Note different scales.) Results from Example 53.

which has significantly affected the dynamic response. The potentially unfavorable
dynamic effects of recycle can be reduced through automatic control strategies,
which retain most of the process performance benefits, as demonstrated for this
chemical reactor design in Figure 24.11.

The simple example in this section demonstrates the potential effects of recycle
on dynamic behavior:

1. Recycle can alter the stability and possibility for periodic behavior of the
overall system, because it affects the poles of the overall system.

2. The time constants and steady-state gain of the overall system with recycle
can be changed substantially from their values without recycle.

Again, understanding the effect of recycle on dynamic responses is an important
aspect of process dynamics, and the material in this section is enhanced by reference
to the studies of recycle in the Additional Resources at the end of this chapter.

5.6 o STAGED PROCESSES

Staged processes are used widely in the process industries for multiple contact
ing of streams and can be considered as a special interconnection of elements, in
which an element exchanges material and energy with only the adjoining stages.
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Some common examples are vapor-liquid equilibrium (Treybal, 1955), multieffect
evaporation (Nisenfeld, 1985), and flotation (Narraway et al., 1991). Staged sys
tems can experience a wide variety of dynamic behavior depending on the physical
processes (e.g., mass transfer, heat transfer, and chemical reaction) that occur at
each stage.

The fundamental model for a staged system must include all significant bal
ances on every stage. However, the variables at every stage are not always of great
importance for the overall performance of the process, because only the properties
of the streams leaving the process are usually of interest. In some cases, a few
intermediate variables could be important; an example is the flows on stages of a
stripping tower, which might approach or exceed the hydraulic limits for proper
contacting efficiency. We will assume in this section that the only output properties
of interest are in the product streams.

In this section the dynamics of a distillation tower, shown in Figure 5.15, are
considered as an example of staged systems to introduce the modelling approach
and describe typical dynamic behavior. An accurate model of a multicomponent
distillation tower must consider complex thermodynamic relationships and em
ploy special numerical algorithms for the simultaneous solution of equilibrium
expressions and material and energy balances. To simplify the presentation while
maintaining a realistic model, the tower considered will separate only two compo
nents, and the phase equilibrium is assumed to be well represented by a constant
relative volatility (Smith and Van Ness, 1987). Also, the energy balance at each
stage can be simplified by the assumption of equal molal overflow, which implies
that the heats of vaporization of both components are equal and mixing and sensible
heat effects are negligible.

The assumptions are

1. The liquid level on every tray remains above the weir height.
2. Equal molal overflow applies.
3. Relative volatility a and heat of vaporization A. are constant.
4. Holdup in vapor phase is negligible.

r \

Feed
FM,

0Z3
FM* FMD Distillate

VMq
W

rcbr=TT
FMB Bottoms
XB

FIGURE 5.15

Distillation tower.



The following nomenclature is used:

MM = molar holdup of liquid on tray
FM = molar flow rate of liquid

X = mole fraction of light component in liquid
A. = heat of vaporization

VM = molar flow rate of vapor
Y = mole fraction of light component in vapor

The schematic of a general tray in Figure 5.16 shows that every tray has the
potential for feed and product flows and heat transfer. With the assumptions and
the general tray structure, the basic overall and component balances for each stage
or tray (i = 1 n) can be formulated as

Overall material (molar) balance on liquid phase:
d M M Q i
-£- = FM,+, - FM/ + FM/, - FM,, - -y-

Quasi-steady-state overall material (molar) balance on vapor phase:

vm,=vm;_! -vmpi
VM?,, = VM,_,+VM/f

WMi-iYt- i+WMftYft

♦ f

i7-i VMi - l

Light component balance on the tray
diMMiXi)

dt
= FM/+,X/+i + FMfiXfi - (FM„ + FM,)X,

- (VM/ + VMpi)Yj + VMU*^

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

This formulation is adequate for every equilibrium tray in the tower. For most
trays, feed flows, product flows, and heat transferred are zero, while at least one
tray has a nonzero feed. The top tray has a liquid feed, which is reflux, and its vapor
stream goes to the total condenser. The bottom tray has its liquid go to the kettle
reboiler, which is also an equilibrium stage. Note that although the equations can
be formulated as shown, the computer implementation in this form would involve
extensive multiplications for the zero streams; thus, an efficient implementation
for a specific design would eliminate streams that are always zero.

Since there are many more variables than equations in the conservation bal
ances, the model is not completely specified by these balances alone. The model
requires constitutive expressions to relate liquid and vapor compositions. The phase
equilibrium equation for a binary system with constant relative volatility a is

aXi
Yi = (5.58)1 + (a - \)Xi

The model also requires constitutive expressions to relate liquid flows and
inventories on the trays. The liquid flow from a tray is related to the level (L, =
MMi/pntA) above the weir height, Lw, by (Foust et al., 1980)

F M / = K W t - L w
V PmA

(5.59)
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FIGURE 5.16

General tray used in modelling
distillation.
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with A being the cross-sectional area and pM moles/m3. The modelling effort is
not complete until models are developed for the associated equipment, which for
this distillation tower includes the heat exchangers that vaporize part of the liquid
accumulated in the bottom drum and condense the overhead vapor. The behavior of
these is not particularly complex but requires feedback control to model properly.
To maintain simple model structures without the need for control at this point,
the reboiler duty is assumed to be proportional to the heating medium flow, and
the vapor overhead is assumed to be completely condensed without subcooling,
so that the pressure is maintained at a constant value by adjusting the condensing
duty, thus

Qcond = VM„*

Qreb = ^reb^reb

(5.60)
(5.61)

Also, the volumes in the overhead and bottom accumulators can be modelled
by overall and component balances. In reality, the levels of these inventories would
be controlled by adjusting the product flows; in this example, the levels are assumed
exactly constant, so that the models become

FMD = VM„ - FM/?
FMB = FM, - VM0

(5.62)
(5.63)

The composition in the overhead accumulator (X„+, = Xq) can be deter
mined from a component material balance:

MMD dXo
dt

= VM„y„ - XD(¥MD + FM*) = VM„(y„ - XD) (5.64)

Again, with the inventory constant, the kettle reboiler can be modelled with a
component material balance (Xn = XB), equilibrium relationship, and a calcula
tion of vapor flow based on heat transferred.

MMB dXB
dt

Y* =

= FM,X, - FMbXb - VMoFo

aXB

VMo =

\ + (a-\)XB
Qreb

(5.65)

(5.66)

(5.67)
To specify the system completely, sufficient external input variables must be

defined so that the degrees of freedom are zero. The feed flow and composition must
be specified along with two additional variables, here selected to be the distillate
product flow Fo and the reboiler heating flow Freb. With these external variables
specified, the degrees-of-freedom analysis summarized in Table 5.3 shows that the
system is exactly specified. The number of equations is equal to the number of de
pendent variables; thus, there are zero degrees of freedom. Note that the parameters
(k, a, Kw, MM/>, KKb, MMB, and Lw) were excluded from the analysis, because
they are always constant. Also, the feed variables are determined by upstream pro
cess conditions. Typically, external variables like the reboiler heating flow rate and
the distillate product flow rate are adjusted to achieve the desired product compo
sitions; here, they are assumed known external variables. The model formulation
included assumptions, like constant accumulator levels and pressure, that are not
necessary but simplify the model and presentation.



TABLE 5.3
Distillation degrees off freedom for n trays

Equations
External specified

Variables (dependent) variables (independent)
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Trays (5.53) to (5.59) for each MM, FM, VM, X,
t r a y Y , Y * , V * f o r e a c h t r a y

p\usFMn+ltXn+x, V0,
O n ) Y 0 ( 7 n + 4 )

Overhead (5.60), (5.62), and 0cond
( 5 . 6 4 ) ( 3 ) ( 1 )

Reboiler (5.61), (5.63), (5.65), XB, FMfi, and QKb
( 5 . 6 6 ) , a n d ( 5 . 6 7 ) ( 5 ) ( 3 )

T o t a l I n + 8 I n + 8

F M / J / . V M / . Y / ,
FMp, VMP, Q for each
tray

FM*orFMDlMMD

Freb, MM5

(7/2)

(2)

(2)
7« + 4

TABLE 5.4
Base case design parameters for example
binary distillation

Relative volatility
Number of trays
Feed tray
Analyzer dead times
Feed light key
Distillate light key
Bottoms light key
Feed flow
Reflux flow
Distillate flow
Vapor reboiled
Tray holdup
Holdup in drums

2.4
17
9
2 min
XF = 0.50
XD = 0.98 fraction
XB = 0.02 fraction
FM/r = 10.0 kmole/min
FM/? = 8.53 kmole/min
FMD = 5.0 kmole/min
VM0 = 13.53 kmole/min
MM,- = l.Okmole
MMfl=MMD = lO.Okmole

EXAMPLE 5.4.
Determine the dynamic behavior of a binary distillation tower with the parameters
in Table 5.4. The model equations can be integrated numerically to determine the
response of the system from specified initial conditions for any values or func
tions of the external variables. The dynamic responses are obtained by estab
lishing a steady-state operating condition and introducing a single step change
to one of the external variables; each step is 1 percent of the base case input
value. (This is exactly how the experiment would be performed on the physical
tower, as explained in Chapter 6.) The results are shown in Figure 5.17a and
b. The composition responses are smooth monotonic sigmoidal curves, in spite
of the complexity of the process. Note that changing a single input affects both
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Response of distillate and bottoms products in Example 5.6: (a) to reboiler step
change; ib) to reflux step change. (These dynamic composition responses are
obtained without sensor delays when the pressure and the distillate and bottoms
accumulator levels are maintained constant.)



product compositions—an important factor in subsequent control design as dis
cussed in Chapters 20 and 21.

S 3 3 » I P § i ! i ^

This summary presents a small sample of the results available on distillation
dynamics. They have been presented as general guidelines for the behavior of
two-product distillation with simple thermodynamics (e.g., no azeotropes) and no
chemical reaction. The reader is encouraged to refer to the citations and Additional
Resources for further details. This distillation example will be considered in later
chapters, where the control of the product compositions, through adjustments to
such variables as the reboiler duty and reflux flow, will be investigated.
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5.7 □ MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS

Many, but not all, of the systems modelled in Chapters 3,4, and 5 have involved a
single input and output. If intermediate variables existed, they could be eliminated
using transfer functions and block diagram algebra to develop a single input-single
output (SISO) equation. This approach helped to simplify our task of learning how
to model dynamic responses and is applicable to some realistic processes. However,
the majority of processes have several inputs, and process operation is concerned
with more than one output simultaneously. For example, the nonisothermal chem
ical reactor in Section 3.6 has coolant flow and inlet concentration as inputs and
reactor concentration and temperature as outputs. Also, the distillation tower in the
previous section has distillate product flow, reboiler flow, and all feed properties
and flow rate as inputs and concentration of both product streams as outputs.

The methods described in the previous two chapters for developing fundamen
tal models—linearization, transfer functions, block diagrams—are all applicable
to these multiple input-multiple output (MIMO) systems. Again, we see that many
intermediate variables can exist in a process; in the distillation tower, the tray com
positions and holdups are intermediate variables. These intermediate variables are
included in the fundamental model and eliminated algebraically from the linearized
input-output relationship.

EXAMPLE 5.5.
Determine the dynamic response of the concentration in the CSTR with second-
order reaction in Example 3.5 to step changes in the inlet concentration and the
feed flow rate. The definitions of the changes are

ACao = 0.0925 mol/m3
AF = -0.0085 m3/min

Feed concentration step:
Feed flow rate step:

at t = 2 min
at t = 7 min

The effect of several input variables on a single output variable can be determined
through the individual input-output models. The fundamental model for the reactant
component material balance is repeated here:

d_C*
dtV ^ = F i C M - C A ) - V k C 2 A (5.68)

'AO

U
do

To clarify the linearity of the model, all constants are substituted in equation (5.68)
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to give

(2.1)^ = F(CA0 - CA) - (2.1)(0.040)CJat
The model is nonlinear because of the product of variables and the concentra
tion terms. The model in equation (5.68) can be linearized for a change in the
inlet concentration (with flow constant) or for a change in the feed flow (with inlet
concentration constant), giving

dCi
TCAO- dt + C'K = KcaoCaAO

with

TCAO =

Z F =

dCi

^ C A O =

(5.69)

(5.70)

Fs+2VkCAs

V
KF =

Fs + 2VkCAs

(CaOs ~ CAs
Fs + 2VkCAs "' Fs+2VkCAs

These two models can be solved for step changes to give

[Ca(01cao = ACaoKcao(1 - <T'l/rcA0) with tx = t - 2 > 0
- < 2 / T F ) \ N \ t h t 2 - t - l > 0

(5.71)

(5.72)[C'Ait)]F = AFKFi\-e-
Note that the times from the steps are represented by different symbols (h and t2)
because the two step changes are introduced at different times; also, the reactant
concentration change is zero until tx > 0 or t2 > 0, respectively. The total change
in reactor concentration of A is the sum of the changes due to inlet concentration
and flow.

CA(f) = CKit) + [CA(f)]cA0 + [C'Ait)]F

For the data in Example 3.5, the following values can be determined:
(5.73)

V = 2.1 m3
Caos = 0.925 mole/m3

KCA0 = 0.146

Fs = 0.085 m3/min
Ca5 = 0.236 mole/m3
zF = 3.62 min

k = 0.50 [(mole/m3)min]_1
tcao == 3.62 min
KF = 1.19 (mol/m3)/(m3/min)

The results from the linearized analysis in equations (5.71) to (5.73) are given
in Figure 5.18. Clearly, the output concentration is the sum of two first-order step
responses beginning at different times. This modelling approach can be extended
to any number of input variables affecting an output.

EXAMPLE 5.6.
Sketch a block diagram showing the relationship between the input variables,
reflux flow and reboiled vapor, and the output variable, light component mole
fraction in the distillate and bottoms products.

The data in Figure 5.16 show that both input variables affect both output vari
ables. Thus, each input has two transfer functions, one for each of the output
variables. The sketch for this process is shown in Figure 5.19. A natural ques
tion is "How are the transfer functions determined?" In previous examples, the

CC
Stamp
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FIGURE 5.18

Dynamic response of reactant concentration for a step increase in inlet
concentration (/ = 2) and step decrease in flow rate (t = 7) in

Example 5.5.

fundamental model has been linearized and all intermediate variables eliminated
by algebraic manipulations. However, the fundamental model for the distillation
process is large, involving about 150 equations, so that the analytical procedure
would be excessively time-consuming. Fortunately, the transfer functions can be
determined experimentally from data very similar to Figure 5.16, and this empirical
modelling procedure is explained in the next chapter.
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FIGURE 5.19

Block diagram for the linearized models
for a two-product distillation process.

5 . 8 □ C O N C L U S I O N S

The results of this chapter clearly demonstrate that process structures have strong
effects on dynamic behavior and that these effects can be predicted using the
methods presented in the previous chapters. Many of the strongest results relate
to the "long-time" behavior of the systems, because they are determined by the
poles of the transfer function and are independent of the numerator zeros. These
properties involve stability and the related tendency for over- or underdamped
behavior. However, the numerators also play an important role in the dynamic
response, as shown by the examples in the section on parallel structures.

It is worth noting that each of these process structures is covered individually
to clarify the analysis of their effects on dynamic behavior. Naturally, a process
may contain several of these structures, all of which will influence its behavior.
The study of complex processes is delayed until Parts V and VI, which address
the control of multiple input-multiple output systems.

Finally, in the last three chapters, dynamic responses of many processes to
a step input have been shown to have a sigmoidal shape. This means that these
processes could be approximated by adjusting parameters in a model of simple
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structure. While this observation is not especially helpful for analytical modelling,
it is very important for empirical modelling, which develops models based on
experimental data. This is the topic of the next chapter.
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The guidance before the questions in Chapters 3 and 4 is appropriate here as well.
The key new issue introduced in this chapter and demonstrated in these questions is
the effect of structure on the behavior of relatively simple individual elements.

QUESTIONS
5.1. A linearized model for a stirred-tank heat exchanger is derived in Example

3.7 for a change in the coolant flow rate. Extend these results by deriv
ing the model for simultaneous changes in the coolant flow rate and inlet
temperature. Also, determine an analytical expression for the outlet tem
perature T'it), for simultaneous step changes in the coolant flow and inlet
temperature. (You may use all results from Example 3.7 without deriving.)

5.2. The jacketed heat exchanger in Figure Q5.2 is to be modelled. The input
variable is Tq, and the output variable is T. The inlet coolant temperature
is constant. The following assumptions may be made:

(1) Both vessels are well mixed.
(2) Physical properties are constant.
(3) Flows and volumes are constant.

7b

'cO

do
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(4) Q = UAiT - Tc)
(5) The dynamic balances on both volumes must be solved simulta

neously.
id) Write the basic balances for both volumes in deviation variables.
ib) Take the Laplace transforms.
(c) Combine into the transfer function T'is)/ Tq(s).
id) Analyze this result to determine whether the dynamic behavior is (i)

stable and (ii) periodic. Remember that these properties are defined by
the denominator of the transfer function.

ie) The transfer function ignores initial conditions of the system. Briefly
explain why the transfer function is useful—in other words, what prop
erties can be determined easily using the transfer function?

5.3. The continuous-time systems of two stages shown in Figure Q5.3a and b
are to be analyzed. Assumptions are the following:

(1) Liquid holdups are constant = M.
(2) Constant molal overflow; the liquid (L) and vapor (V) flows are

constant.
(3) The concentrations x3 (and x2 in Figure Q5.3b) are constant.
(4) The accumulation in the vapor phase is negligible.
(5) Equilibrium can be modelled as yi = Kxt for this binary system.

The nature of the dynamic behavior is to be determined for the input-output
x2(s)/yo(s).
(a) Derive the time-domain equations describing the dynamics of the con

centrations on the two trays, x[ (t) and ^(0.t0 tne input variable y'0(t),
in deviation variables.

(b) Combine the results of (a) into the single transfer function x2 (s)/yo(s).
(c) Determine the nature of the response. Is it (i) stable, (ii) over- or un

derdamped?
(d) Is the response of x2 to a step change in yn in Figure Q5.3« faster or

slower than in the system in Figure Q5.3& (with the same parameter
values and x2 constant)?

5.4. The series of four chemical reactors are shown in Figure Q5.4. Each reactor
is constant volume and constant temperature, and the flow rate is constant.
The reaction is A ->• B with the rate expression ta = —kC&. The con
centration of component A in the last reactor is to be controlled, and the
feed concentration of the inlet to the first reactor is a potential manipulated
variable.
(a) Derive the model (algebraic and differential equations) relating Cao

to CA4-
(b) Combine these equations into one input-output model that has only

Cao and Ca4, with other relevant variables eliminated. (Hint: Taking
the Laplace transform of the equations in deviation variables is a good
approach.)

(c) Based on the model in (b), determine
(i) The order of the system
(ii) The stability of the system

(iii) The damping of the system



(iv) The gain of the system
(v) The shape of the response of Ca4 to a step in Cao

(d) Based on your results in (c), does a causal relationship exist between
Cao and Ca4?

(e) Based on your results in (d), is it possible to control CA4 by adjusting
Cao?
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FIGURE Q5.4

Series stirred-tank reactors.

5.5. The recycle mixing system in Figure Q5.5 is to be considered. The feed
flow is 1 unit, and the recycle flow is 9 units. The pipe has a dead time
of 10 seconds, and the recycle has negligible dynamics. The system is
initially at steady state with pure solvent entering as feed. At time = 0, the
concentration of the feed increases to 10%A. Plot the concentration at the
exit of the pipe from t = 0 to the new steady state.

5.6. The chemical reactor without control of temperature or concentration in
Figure Q5.6 is to be modelled and analyzed. The assumptions are as follows:

(1) Cp(Cp = Cv), density, UA are constant.
(2) Q = UA(T - Tcin)
(3) F, Tc, T0, level are constant.
(4) Disturbance is Cao(0'
(5) Heat of reaction is significant.
(6) Heat losses are insignificant.
(7) System is initially at steady state.
(8) Rate of reaction =

mole

F = l

-rA=k0e-E'RTCA (m3)(min)
(a) Derive the material and energy balances for this reactor. Carefully

define the system, state all assumptions, and show all steps, especially
in the energy balance.

-a F =

F„=9

FIGURE Q5.5

-A0

(wm
^

i

Cooling FIGURE Q5.6
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nents of the dynamic response, and establish criteria for the qualitative
characteristics.)

(d) Repeat (c) for underdamped behavior.
(e) Repeat (c) for unstable behavior.

5.7. A single isothermal CSTR has the following elementary reactions.

C a s e L A ^ B C a s e l L A ^ B

Only component A is in the feed stream, and its concentration, Cao, can
change as the input to the system. Answer the following questions for both
Cases I and II.
(a) Derive the model describing the concentration of component B in the

reactor.
(b) Which of the general system structures covered in this chapter de

scribes this system?
(c) Determine whether the system can experience underdamped, over-

damped, and unstable behavior for physically possible parameter
values.

(d) Describe the response of this system to feed concentration step changes
in Cao and determine which system would have a faster response.

(e) Repeat all parts of this question, with the composition of A in the
reactor being the output variable.

5.8. Figure 5.1 can be expanded to include more process systems and more
inputs.
(a) Include the following systems, with a sketch of a physical process: (1)

\/(xs + l)3 and (2) e~es/(xs + 1).
(b) Include the following inputs for all systems: (1) ramp (CO and (2)

pulse of finite duration.

5.9. The dynamic response of Ts in the heat exchanger and stirred-tank sys
tem in Figure Q5.9 is to be determined for a step increase in the flow to
the exchanger Fex, with the total coolant flow Fc constant. (Assume that
negligible transportation lag occurs in the pipes.)
(a) Derive the models for both stirred tanks.
(b) Determine the individual transfer functions.
(c) Derive the overall transfer function.
(d) Which of the general system structures covered in this chapter de

scribes this system?
(e) Explain the numerator zeros (if any) and poles in the system.
(f) Describe the dynamic response of this system for the input step change

in F«v.
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5.10. The system of vessels in Figure Q5.10 has gas flowing through it, and F0
is independent of Pi.
(a) Assume that the flow through the restrictions is subsonic.

(1) Derive linearized models for the pressure in each system.
(2) Determine the transfer function for F2(s)/Fq(s).
(3) Describe the response of this system to a step in Fo.

(b) Repeat the analysis in part (a) for sonic flow through the restrictions.

FIGURE Q5.10

5.11. Answer the following questions.
(a) Demonstrate that the dynamic behavior of a series of stable, first-order

systems approaches the dynamic behavior of a dead time as the number
of first-order systems becomes large, with xn = x\/n. Determine the
value of the dead time.

(b) For the reactor with recycle in Example 5.5, determine the value of the
heat exchanger gain, Kh2, that would cause the system to be unsta
ble. Explain the expected dynamic response to an increase in the feed
temperature.

(c) Discuss the manual control of a series of noninteracting time constants,
a parallel system with overshoot, and a parallel system with inverse
response. What would be your thought process for feedback control?
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reactor.

A + B -▶ 2B + other products rA = kCAC&

(a) Formulate a dynamic model of the reactor to predict the concentration
of B in the reactor.

(b) Determine the possible steady-state values for Cb when only A is
present in the feed. (Hint: Two possible steady states exist.)

(c) Under what conditions does the reactor go to each steady state?
(d) Reformulate the model and answer all questions for the case in which

the product is separated and some pure B is returned to the reactor as
a recycle. What would be the advantage of this recycle? How would
the recycle affect the gain and time constant of Cb in response to a
change in Cao?

5.13. For each of the systems in Figure Q5.13, demonstrate through a funda
mental model whether the system inventory is self-regulating or not for
changes in flow in. In all cases, the flow in (Fm) can change independent
of the inventory in the vessel.
(a) A heat exchanger in which the pure-component liquid entering at its

boiling point in the vessel boils and the duty is proportional to the heat
transfer area.

(b) A liquid-filled tank with a constant flow out.
(c) A gas-filled system with a moving roof and a constant mass on the

roof. The gas exits through a partially open restriction.
(d) A gas-filled system with constant volume. The gas exits through a

partially open restriction.
5.14. The stirred-tank mixing process in Figure Q5.14 is to be analyzed. The

system has a single feed, two tanks, and a single product. All flow rates,
along with the levels, are constant. Answer the following questions com
pletely. You may assume that (1) the tanks are well mixed, (2) the density
is constant, and (3) transportation delays due to the pipes are negligible.
For parts (a) through (c), F3 = Fo.
(a) Derive the analytical model for the input-output system Cao and Ca2

with all flows constant.
(b) What is the general structure of the system in (a)?
(c) What conclusions can be determined for the system in id) regarding

the stability, periodicity, and either overshoot or inverse response for
a step input?

id) Determine the answers for ia) through (c) for (i) F3 = 0 and (ii) F3 =
very large.

5.15. The system in Figure Q5.15 has two stirred tanks; the first is a heat ex
changer, and the second is a CSTR. The product of the reactor exchanges
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heat with the feed in the heat exchanger. A single, zeroth-order reaction of A
->• products occurs in the second reactor with a heat of reaction (—A Hnn).
id) Formulate a model of the system to predict the temperature response in

both tanks to a change in the feed temperature with all flows constant,
and linearize the model. Determine to which process structure category
this process belongs.

ib) Determine under what conditions the system would experience (i) pe
riodic behavior and (ii) unstable behavior,

(c) Discuss your results and limitations in the model.
[Hint: This system is simpler than Example 3.10, in that the coolant flow
is constant; thus, UA = aF^ is constant. It is more complex in that the
energy balances for the two tanks must be solved simultaneously.]

5.16. The recycle system in Figure Q5.16 has a well-mixed, isothermal, constant-
volume reactor and subsequent separation unit, in which the unreacted
feed is separated from the product and returned to the reactor. A single
step change occurs in the reactor temperature, which can be considered a
step in the rate constant of the first-order reaction. Model the system and
determine and compare the dynamics for two operating methods.

FIGURE Q5.15
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id) The flow FA is constant.
ib) The flow FAr is constant.

5.17. A tubular heat exchanger with plug flow in the tube has steam at a constant
temperature on the shell side. The system is initially at steady state with
no temperature driving force, and the steam is introduced in a step to the
shell.
id) Determine the tube outlet temperature as a function of time. This will

require analyzing a distributed-parameter model.
ib) Formulate a lumped-parameter model that would give an approximate

result for the tube outlet temperature.

5.18. One way to account for imperfect mixing in a single stirred tank is to
include commonly occurring nonidealities and fit parameters in a model
to empirical data. For the nonideal model in Figure Q5.18, plot the shapes
of the step and impulse responses for various values of the nonidealities.
Could you fit an imperfect model using one of these sets of data?

5.19. Derive the models reported in Figures 5.2 and 5.3 for the electrical and
mechanical systems.

5.20. From the principles in this chapter (and Appendix D), estimate the shape
and ?63% of the step change for the following systems: id) Example 3.3, ib)
Example 3.10, (c) Question 4.15, and (d) Question 4.18.

5.21. A nonisothermal CSTR with heat transfer is modelled in Section C-2 in
Appendix C. For each of the following situations, describe the possible
shapes of the dynamic response of the concentration, Ca, to a step change
in the coolant flow rate. There may be more than one per situation. Ex
plain your answers by discussing, for example, the interaction between the
material and energy balances.
id) No chemical reaction, Ko = 0
ib) Nonzero chemical reaction, but AHrxn = 0
(c) General case with nonzero reaction and heat of reaction


