Chemical

Reactor
Modelling
and Analysis

The chemical reactor is one of the most important unit operations considered
by chemical engineers; thus, proper modelling and analysis are essential. The
engineer should be able to derive the basic balances for typical reactor designs and
to anticipate the range of likely dynamic behavior. This appendix is provided to
complement and extend the coverage in Chapters 3 through 5 by deriving the energy
balance, demonstrating linear analysis, and addressing more complex dynamic
behavior. Sections C.1 to C.3 apply standard modelling and analysis methods to
this important chemical process and should be understood by all students. The
material in Sections C.4 and C.5 presents more complex behavior that occurs in
some chemical reactors and can be covered as enrichment material.

C.1 0 ENERGY BALANCE

Material balances for reacting systems were derived in Chapter 3 and applied
throughout the book. The energy balance for a continuous-flow chemical reactor
is used, but not derived, in Section 3.5. The reactor energy balance is derived here,
beginning with the general energy balance in equation (3.5), with the following
assumptions:

1. The system volume is constant.

2. The heat capacity and density are constant.
3. APE = AKE = 0.

4. The tank is well mixed.

5. One chemical reaction is occurring.
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In this derivation the partial molar enthalpy of component i in a stream of n
components, A;, is assumed to be a function of temperature only.

oH
BC,

The symbol C; is (moles/volume) of component . The individual terms in equation
(3.5) can be expressed as

= h;(T) = partial molar enthalpy (C.1H)

d dH d[C;hi(T
Accumulation: —U =V Z [—-S—)] (C2)
dt P
n
Flowin: FHy=F Z Ciohi (To) (C.3)
i=1
Flowout: FH=F Z C;hi(T) (C.4)

i=1
The accumulation term can be expanded to give

vy ALy [540 4Se (4] e
i-1

The second term of the right-hand side of equation (C.5) can be simplified by
noting that )_ C;(8h;/3T) = pc, (cal/[volume K]). Also, the first term on the
right-hand side can be expanded by substituting the dynamic component material
balance from equation (3.75) for dC;/dt to give
n
Zh [ dc‘] =) hilFCio— FCi+ Vur]
i=l (C.6)

n n
= F ) Ciohi(T) = F ) Cihi(T) + V AHpar
i=1 i=l1

The coefficients ; represent the amount of the component i generated from the
extent of reaction r; for the example of a single reaction A — B; the coefficients
are —1 for component A and +1 for component B. The sum of the products of
these coefficients times their component enthalpies is commonly called the heat
of reaction and is available in references. Combining the results gives

dT

PVCy—- = FZC.O [hi(To) — hi(T)]
(C.7
0

+FZ Cilhi(T).< hi(T)] + V(= AHpo)r + @ — W,

i=l1

Clearly, the second term on the right is zero. Also, the first term can be simpli-
fied, because partial molar enthalpy is assumed independent of composition, by
expressing the total enthalpy of a stream as a function of its temperature to give

dT
VpC -d—- = FpCP(T() -+ V(_Aern)r + Q- W (C.8)

Equation (C.8) is the basic energy balance for a well-mixed, continuous-flow,
liquid-phase chemical reactor. The second term on the right-hand side can be



thought of as “generation due to reaction,” but it is important to recognize that
no generation term exists in the basic energy balance in equation (3.3). Also, it
is important to recognize that many approximations have been employed that are
not general. This equation is usually valid for liquid-phase systems but contains
assumptions often not valid for gas-phase reactors. For alternative presentations
and cogent discussion of reactor modelling, see Aris (1989) and Denn (1986).

C.2 O MODELLING OF AN EXAMPLE NONISOTHERMAL CSTR

In this section, the basic material and energy balances are applied to the nonisother-
mal CSTR shown in Figure C.1. Also, these equations are linearized, so that the
linearized model can be used to determine important properties of the process,
such as stability.

GOAL. Thetemperature of a chemical reactor is to be raised to 395.3 K, without
exceeding 395.3 K, by adjusting the coolant flow. How should the coolant flow
be adjusted? A more fundamental question is the shape of the dynamic response;
is it monotonic or oscillatory, and what design parameters and external variables
influence this response? '

INFORMATION. The process is shown in Figure C.1, and the system is taken
to be the liquid in the tank. The chemical reaction is first-order with Arrhenius
temperature dependence.

ASSUMPTIONS.

1. The tank is well mixed.

2. Physical properties are constant.

3. The shaft work is negligible.

4, The irreversible, elementary reaction is A — B.

DATA.

1. F = 1m*/min; V = 1 m? Cap = 2.0 kmole/m*; Tp = 323K; C), = 1 cal/(g
K); p = 106 g/m?; kg = 1.0 x 10" min~'; E/R = 8330.1 K; —AHyy, =
130 x 108 cal/(kmole); Tin = 365 K; (F.), = 15 m*/min; Cpc = 1 cal/(gK);
pe = 10% g/m3; a = 1.678 x 10° (cal/min)/(K); b = 0.5.

2. For this data, the steady-state values of the dependent variables are T; = 394
K and Ca; = 0.265 kmole/m>.

3. The change in coolant flow is a step of —1 m>/min.

FORMULATION. The system is the liquid in the tank. The overall material
balance, as in several previous examples, demonstrates that the mass in the tank is
approximately constant; thus, Fp = F; = F. The component material balance on

the reactant gives

Vi"dCTA = F(Cao — Ca) — Vkoe E/RTC, (C.9)
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FIGURE C.1

Nonisothermal CSTR process.
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The energy balance for this system is

dT
VoCp— = pCpF(To = T) =

b+1
aF,

aF?
F. + -
¢ zchpc

+(—AHp) Vioe 58T C

(T — Tcin)

(C.10)

These two nonlinear differential equations cannot be solved analytically. The
linearized equations in deviation variables are as follows:

where

where

dc,

—dt_A = auC;\ + alzT’ + 013CA0 + a14Fc’ + a.sTé + a’lGF'
dT’ / '
= anCh + anT’ +apCho + auF, +axsTy +axF
F -
an ==y — ke E/RT:
E -
ap = ——RTZ koe E/RT, CAS
F
ans = _‘7
ay =0
als = 0
(Cao — Ca)y
ale = —'_V__'
a =
PCp
E
F UA} RT?2 _;n
=—=- —AH, S_koe E/RT:C
az v~ Vo, + ( rxn) oC, o€ As
an =0
. a F°
—ame Fc; + ‘Ezpccpc [Ts - (Tcin)s]
ax = b 2
WoC,y) ( Fos + 2L
Pl cs ZPcCpc
F
ax = v
(TO - T)s
=

UAY = a(F)?* [[(Fe)s + a(Fe)?/2p:Chel

(C.11)

(C.12)

(C.13)

The approximate model is derived about the steady-state operating point for the
reactor. Note that the inlet concentration C),, the coolant flow rate F!, the inlet
temperature T, and the feed flow rate F’ are input variables in the foregoing
linearized equations, although only the coolant flow varies in this example; this is
done because changes in other input variables will be considered elsewhere.
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FIGURE C.2

Dynamic response for CSTR for step in cooling flow of —1m*/min at time = 1.

SOLUTION. The analytical solution to the linearized model requires the si-
multaneous solution of equations (C.11) and (C:]2), because C, and T’ appear
in both equations. Since the integrating factor method cannot be applied to this
problem, the analytical solution to the linearized equations can be determined us-
ing Laplace transforms. To determine the behavior of the process and answer the
specific question posed in this example, the solution of the nonlinear model will
be determined via a numerical solution using an explicit method; the result for the
Euler method with a step size of 0.005 minute is given in Figure C.2. The solution
is underdamped (i.e., oscillatory) for this model and set of design parameters and
operating conditions. As a result, a single step in the coolant flow large enough
to raise the temperature to its desired final value of 395.3 K leads to a response
that exceeds this maximum value during the transient. Thus, it is not possible with
one adjustment of the cooling flow to achieve the temperature gpecifications, al-
though the temperature could be increased very close to, without exceeding, 395.3
K through a series of smaller adjustments to the coolant flow.

C.3 & THE REACTOR TRANSFER FUNCTIONS

The numerical solution of the nonlinear equations provides an excellent estimate
of the behavior for a specific situation, but it does not provide important analysis
of the effects of parameters on key aspects of the reactor’s dynamic behavior.
These insights can be determined by analyzing the linearized dynamic model in
transfer function form. For example, the transfer function for the temperature-
coolant flow relationship can be determined by taking the Laplace transforms of
equations (C.11) and (C.12), setting the deviation variables of all but one of the
inputs (F,) to zero, and combining equations. The resulting transfer function for
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this example is (C.14)

T(s) _ axs + (az1 ais — axnay)
F.(s) ~ 52— (an +an)s + (anax — anaz)
When the numerical values of the data in Section C.2 are substituted, the result is
a; = -17.55 aip =-0.093 a;4=0.0
a = 852.02 az = 5.77 azg = —6.07

(C.14)

T(s) _ (—6.07s —45.83)
‘ F.(s) ~ (s2+ 1.79s + 35.80)
For the design parameters introduced in Section C.2, the roots of the denominator,

i.e., the characteristic polynomial, are —0.894 + 5.92 . The following important
aspects of the reactor behavior can be determined from the transfer function:

(C.15)

1. Since the roots of the denominator have negative real parts, the system is
stable.

2. Since the roots of the denominator have complex parts, the system is under-
damped.

The dynamic behavior of the linearized model can be determined by substituting
the step input F.(s) = AF./s = —1/s into equation (C.15) and inverting the
Laplace transform. This transform does not appear in Table 4.1 but could be found
in more complete tables. (Alternatively, the partial fractions method could be ap-
plied, as shown in Example H.1 in Appendix H.) The resulting expression for the
temperature response to a step in coolant flow is given in the following equation.

T'(t) = 1.28 + 2¢7%%%4[—0.64 cos (5.92¢) + 0.42 sin (5.92¢)] (C.16)

The temperature is stable and oscillatory, results consistent with the analysis based
on the roots of the characteristic polynomial. The validity of this analysis is con-
firmed by the nonlinear simulation results in Figure C.2, which also show damped
oscillations in the temperature dynamics.

More complex behaviors, which occur occasionally in chemical reactors, are
introduced in the next sections.

C.4 @ MULTIPLE STEADY STATES

Some physical processes exhibit multiple steady states, a behavior that is not ob-
vious without careful analysis. Recall that a steady state is defined as a condition
in which all relevant balances are satisfied when the accumulation terms are zero.
For linear equations, this situation would occur at only one (if any) set of operating
conditions. However, the equations describing most chemical processes are non-
linear, and multiple solutions are possible, although they do not always, or even
often, occur.

The steady-state material balance for the system with a single reaction A — B
is determined from equation (C.9) to be

F
Ca= [F VT m} Cao (C.17)



The second equation, the steady-state energy balance, can be separated into two
terms: Qr for energy transfer and Qp for release due to reaction, which sum to
zero at steady state.

0=0Qr+0Qr (C.18)

a b+ 1
—'_CF(T - Tcin)

F, + <
‘ 20:Cpc

Qr = (—AHu) Vkoe H/F7Cy

The steady-state solution is achieved when the two terms, —Qr and Qp, are equal.
However, more than one solution can exist for this system. To check for multiple
solutions, it is convenient to graph the two terms versus temperature, remembering
that the concentration value used at each temperature is determined from equation
(C.17) at the appropriate temperature. ‘

This procedure has been carried out for three cases of reactor designs, which
are described in Table C.1. Note that most parameters, including the chemical
reaction, are the same in all cases; they differ in only the feed temperature and the
coolant system. In addition to the design input variable values, the table presents the
steady-state output variables, Cas and T;. Also, the linearized stability analysis,
in the form of the poles of the system (without control) at each steady state, is
presented; the poles are the roots of the denominator of equation (C.14).

where Qr = FpCp(Tp—T) —

DATA

F =1m?/min, V = 1 m*, Cap = 2.0 kmole/m?, C, = 1 cal/(g°C), p = 10°g/m’,

ko, = 1.0 x 10" min~!, E/R = 8330.1K™!, —AHyxn = 130 x 10° cal/(kmole)
(F.)s = 15m3/min, Cp, = 1 cal/(gK), p. = 10° g/m?,b = 0.5

Case I is identical to the reactor introduced in Section C.2. The system has a single
steady state, because a graph of the terms — Q7 and Qg in equation (C.18) has
only one intersection. This steady state is stable, because the real parts of the poles
are negative, and the behavior is underdamped, because the poles are complex.
Case I has multiple steady states, as is demonstrated in Figure C.3, where the
(negative of the) “energy transfer” and “release due to reaction” terms are equal

TABLE C.1
Data for continuous-flow stirred-tank reactors

903

Multiple Steady States

Ca

Variables Case | Case ll

Case Il

343
310
0.516 x 108

323
365
1.678 x 10°

To(K)
Tcin(K)
a (cal/min K)/(m3/min)

323
340
1.291 x 10°

1.37
350
1.94, —0.71

1.79
330.9
—0.96 £ 0.47j

0.26
393.9
~0.89 +5.92;

Steady-state Ca(kmole/m?3)
Steady-state T(K)
Poles (min~!)

0.16
404.7
—1.6+:4.6j

1.06
360
0.34 £ 1.41;
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at three temperatures! Thus, this chemical reactor can operate at three distinct
sets of concentration and temperature for the same values of all input variables
and parameters. Next, the stability in a small region about each steady state is
evaluated, using linearized models about each steady state to determine whether
the reactor would operate at the conditions without feedback control. The results
in Table C.1 indicate that two steady states are stable, whereas the steady state
with the intermediate temperature is (locally) unstable, because it has a pole that is
real and positive. This result indicates that only the two stable steady states can be
achieved in practice without control. Any slight deviation from the exact values in
the inputs in the table would result in the reactor dynamic response moving away
from the unstable steady state toward one of the stable steady states. The final
steady state achieved depends on the initial conditions of the reactor. For example,
if the initial conditions are taken (arbitrarily) as 393.9 K and 0.26 kmole/ m3 (the
values from Case I), the Case II reactor does not approach the unstable steady
state, but rather approaches the steady state at the higher temperature, as shown in
Figure C 4.

The instability of the intermediate temperature in Case II can be understood
from steady-state arguments. It can be determined from Figure C.3 that as the
temperature increases slightly from the intermediate steady state, the magnitude
of the heat release increases faster than the magnitude of the heat transfer; that
is, d(—Qr)/dT < d(Qg)/dT. Thus, any small positive deviation from the inter-
mediate temperature will create a tendency to increase the temperature further. A
similar conclusion can be determined for a small negative deviation in temperature.
Thus, the intermediate temperature is unstable in the region about the intermediate
steady state, as confirmed by the linearized stability analysis.

The previous analysis demonstrated that the intermediate steady state satisfies
the steady-state balances but is not locally stable. However, these operating con-
ditions can be achieved by stabilizing the system through feedback control. Thus,
if a feedback PI controller is implemented to maintain temperature at 350 K by
adjusting the coolant flow rate, the system reaches the intermediate steady state
stabilized by feedback control at exactly the operating conditions given in Table
C.1; the dynamic response is given in Figure C.5 for this example. The occurrence

400 1 I ! I I 1 |

stable

Energy/time

stable
1 i | 1 1 1 1

00
300 320 340 360 380 400 420 440 460
Temperature

FIGURE C.3
Steady-state analysis of Case II showing three steady states.
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Closed-leop dynamic response of Case II with PI feedback control

(SP = 350K, K, =

—1(m3/min)/K, T; = 5 min).

of multiple steady states and the stabilization of an open-loop unstable steady state
via feedback has been verified empirically for a stirred-tank reactor (e.g., Chang
and Schmitz, 1975b).
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Most models of processes used in design and analysis in chemical engineering
do not exhibit multiple steady states. Typically, systems that are known to have
multiple steady states are analyzed by ad hoc methods such as the one employed
in this section, although some general correlations are available for CSTRs with
simple kinetics (Perlmutter, 1972).

C.5 © CONTINUOUS OSCILLATIONS DUE TO LIMIT CYCLES

Some strongly nonlinear systems can exhibit dynamic behavior that is quite surpris-
ing when first encountered: continuous oscillations in the output variables although
the input variables are absolutely constant! Case III in Table C.1 is an example of
a process with this behavior, which is termed a limit cycle. Notice that this system
has a single steady state that is locally unstable, as demonstrated by the positive
real part of its poles. This is a puzzle, because the only conditions for which the
steady-state balances are satisfied cannot be approached stably; thus, how does the
reactor behave? The answer is given in Figure C.6, which gives the results from the
dynamic simulation of Case III. Clearly, the concentration and temperature never
achieve their steady-state values, because they have periodic behavior that contin-
ues indefinitely without damping. This is “stable” periodic behavior, because the
system will return to the same limit cycle after a pulse perturbation.

This behavior is not common but has occurred, to the surprise and conster-
nation of practicing engineers in commercial situations (Bush, 1969). The be-
havior has also been analyzed mathematically (Aris and Amundson, 1958) and
produced experimentally (Chang and Schmitz, 1975a). Some systems that expe-
rience limit cycles can be stabilized through feedback control (e.g., Chang and
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FIGURE C.6

Dynamic response of Case III without control, showing a limit cycle.



Schmitz, 1975a), but sometimes process design changes are required to obtain
acceptable performance (e.g., Penlidis et al., 1989).

C.6 & CONCLUSIONS

This appendix has provided the derivation of the energy balance for chemically
reacting systems and samples of complex behavior that can be exhibited by such
nonisothermal reactors. Note that all of the examples in this section involved the
same chemical kinetics; thus, a wide array of behaviors can be achieved by chang-
ing the process design parameters. Generally, the occurrence of multiple steady
states and unstable steady states results from some type of positive feedback in
the system. In the examples in this appendix, the positive feedback is provided
by the exothermic chemical reaction. The analysis of steady-state multiplicity and
stability is covered in greater detail in Perlmutter (1972), and the influence of
these phenomena on design and control is reviewed by Seider et al. (1991) and
Silverstein and Shinnar (1982).
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QUESTIONS

C.1. Aslightly modified version of the CSTR described and modelled in Section
C.2 is to be considered in this question. The system is the same except for
the heat of reaction, A Hy,, which is 0.0. You may use all of the results
in the example, specifically equations (C.11) to (C.13) without deriving,
and simply modify the results as appropriate. You do not have to substitute
numerical values to answer this question.

(a) The coolant flow experiences a single step change of magnitude A F.
Derive a model that describes the response of the concentration of
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C‘2.

Ca3.

C4.

component A, C, (t). The result should be in terms of the parameters
of the process and can be expressed in terms of the a;; coefficients in
equations (C.11) and (C.12).

(b) Determine whether the response in part (a) of this question is stable
or under what conditions it can be unstable.

(c) Describe the shape of the response to the step input for the case in
which the system is stable. Under what conditions can it be periodic
(underdamped) like the response in Figure C.2?

For the nonisothermal CSTR in Section C.2, determine the transfer func-
tions relating Ca(s)/ F.(s) and Ca (s)/ Cao(s). These should be in terms of
the a;; coefficients in the linearized model. Compare the results with the
numerators and denominators in equation (C.14) and comment.

Calculate the (open-loop) frequency response of the reactor temperature
in Section C.2 for a sine input in the coolant flow rate, and discuss its
important features. [Hint: You can use the transfer function in equation
(C.15)).

Discuss the use of empirical identification of linear models for the CSTR
in Section C.2. Be sure to address experimental design and the proper
selection of parameter estimation method.



