
CHAPTER 3 : MATHEMATICAL 
MODELLING PRINCIPLES

When I complete this chapter, I want to be 
able to do the following.

• Formulate dynamic models based on 
fundamental balances

• Solve simple first-order linear dynamic 
models

• Determine how key aspects of dynamics 
depend on process design and operation



Outline of the lesson.

• Reasons why we need dynamic models

• Six (6) - step modelling procedure

• Many examples
- mixing tank
- CSTR
- draining tank

• General conclusions about models

• Workshop

CHAPTER 3 : MATHEMATICAL 
MODELLING PRINCIPLES



WHY WE NEED DYNAMIC MODELS

Do the Bus and bicycle have different dynamics?

• Which can make a U-turn in 1.5 meter?

• Which responds better when it hits s bump?

Dynamic performance 
depends more on the vehicle 
than the driver!



WHY WE NEED DYNAMIC MODELS

Do the Bus and bicycle have different dynamics?

• Which can make a U-turn in 1.5 meter?

• Which responds better when it hits s bump?

Dynamic performance 
depends more on the vehicle 
than the driver!

The process dynamics 
are more important 
than the computer

control!



WHY WE NEED DYNAMIC MODELS

Feed material is delivered periodically, but the process 
requires a continuous feed flow.  How large should should 
the tank volume be?

Time

Periodic Delivery flow
Continuous
Feed to process



WHY WE NEED DYNAMIC MODELS

Feed material is delivered periodically, but the process 
requires a continuous feed flow.  How large should should 
the tank volume be?

Time

Periodic Delivery flow
Continuous
Feed to process

We must provide
process flexibility

for good 
dynamic performance!



WHY WE NEED DYNAMIC MODELS

The cooling water pumps have failed.  How long do we have 
until the exothermic reactor runs away?
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WHY WE NEED DYNAMIC MODELS

The cooling water pumps have failed.  How long do we have 
until the exothermic reactor runs away?

L

F

T

A
time

Temperature

Dangerous

Process dynamics 
are important 

for safety!



WHY WE DEVELOP MATHEMATICAL MODELS?

T
A

Process
Input change, 
e.g., step in 
coolant flow rate

Effect on 
output 
variable

• How far?

• How fast

• “Shape”

How does the
process 

influence the 
response?



WHY WE DEVELOP MATHEMATICAL MODELS?

T
A

Process
Input change, 
e.g., step in 
coolant flow rate

Effect on 
output 
variable

• How far?

• How fast

• “Shape”

How does the
process 

influence the 
response?

Math models
help us answer
these questions!



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

We apply this procedure 

• to many physical systems

• overall material balance

• component material balance

• energy balances

T
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SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

T

A

• What decision?

• What variable?

• Location

Examples of variable selection

liquid level → total mass in liquid

pressure → total moles in vapor

temperature → energy balance

concentration → component mass



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

T
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• Sketch process

• Collect data

• State 
assumptions

• Define system

Key property
of a “system”?



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

T

A

• Sketch process

• Collect data

• State 
assumptions

• Define system

Key property
of a “system”?

Variable(s) are the
same for any 

location within 
the system!



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model
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SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

• What type of equations do we use first?

Conservation balances for key variable

• How many equations do we need?

Degrees of freedom = NV - NE = 0

• What after conservation balances?

Constitutive 
equations, e.g.,

Q = h A (∆T)

rA = k 0 e -E/RT

Not 
fundamental, 
based on 
empirical data



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

Our dynamic models will involve 
differential (and algebraic) equations 
because of the accumulation terms.

AAA
A VkCCCF

dt
dCV −−= )( 0

With initial conditions

CA = 3.2 kg-mole/m3 at t = 0

And some change to an input 
variable, the “forcing function”, e.g.,

CA0 = f(t) = 2.1 t  (ramp function)



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

We will solve simple models analytically 
to provide excellent relationship between 
process and dynamic response, e.g.,
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Many results will have the same 
form!  We want to know how the 
process influences K and τ, e.g.,
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SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

We will solve complex models 
numerically, e.g.,

2
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Using a difference approximation 
for the derivative, we can derive the 
Euler method.
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Other methods include Runge-Kutta 
and Adams.



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

• Check results for correctness
- sign and shape as expected
- obeys assumptions
- negligible numerical errors

• Plot results

• Evaluate sensitivity & accuracy

• Compare with empirical data



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

Let’s practice modelling until we are 
ready for the Modelling Olympics!

Please remember that modelling is not 
a spectator sport! You have to practice 
(a lot)!



MODELLING EXAMPLE 1. MIXING TANK

Textbook Example 3.1: The mixing tank in the figure has 
been operating for a long time with a feed concentration of 
0.925 kg-mole/m3.  The feed composition experiences a step 
to 1.85 kg-mole/m3.  All other variables are constant.  
Determine the dynamic response.

(We’ll solve this in class.)

F
CA0

VCA



Let’s understand this response, because we will see it 
over and over!

0 20 40 60 80 100 120

0.8

1

1.2

1.4

1.6

1.8

time

ta
nk

 c
on

ce
nt

ra
tio

n

0 20 40 60 80 100 120
0.5

1

1.5

2

time

in
le

t c
on

ce
nt

ra
tio

n

Maximum 
slope at 
“t=0”

Output changes immediately

Output is smooth, monotonic curve

At steady state

∆CA = K ∆CA0

τ

≈ 63% of steady-state ∆CA

∆CA0 Step in inlet variable



MODELLING EXAMPLE 2. CSTR

The isothermal, CSTR in the figure has been operating for 
a long time with a feed concentration of 0.925 kg-mole/m3.  
The feed composition experiences a step to 1.85 kg-
mole/m3.  All other variables are constant.  Determine the 
dynamic response of CA.  Same parameters as textbook 
Example 3.2

(We’ll solve this in class.)

AA kCr
BA

=−
→    

F
CA0

VCA



MODELLING EXAMPLE 2. CSTR

Annotate with key features similar to Example 1
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Which is faster, 
mixer or CSTR?

Always?



MODELLING EXAMPLE 2.  TWO CSTRs

AA kCr
BA

=−
→    

F
CA0 V1CA1

V2CA2

Two isothermal CSTRs are initially at steady state and 
experience a step change to the feed composition to the 
first tank.  Formulate the model for CA2.  Be especially 
careful when defining the system!

(We’ll solve this in class.)
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MODELLING EXAMPLE 3.  TWO CSTRs

Annotate with key features similar to Example 1



SIX-STEP MODELLING PROCEDURE

1.  Define Goals

2.  Prepare 
information

3.  Formulate 
the model

4.  Determine 
the solution

5.  Analyze 
Results

6.  Validate the 
model

We can solve only  a few models 
analytically - those that are linear 
(except for a few exceptions).

We could solve numerically.

We want to gain the INSIGHT from 
learning how K (s-s gain) and τ’s 
(time constants) depend on the 
process design and operation.

Therefore, we linearize the models, 
even though we will not achieve an 
exact solution!



LINEARIZATION

Expand in Taylor Series and retain only constant and linear 
terms.  We have an approximation.
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Remember that these terms are constant 
because they are evaluated at xs

This is the only variable

We define the deviation variable:  x’ = (x - xs)



LINEARIZATION

exact

approximate

y =1.5 x2 + 3  about x = 1

We must evaluate the 
approximation.  It depends 
on

• non-linearity

• distance of x from xs

Because process control maintains variables near desired 
values, the linearized analysis is often (but, not always) 
valid.



MODELLING EXAMPLE 4. N-L CSTR

Textbook Example 3.5: The isothermal, CSTR in the figure 
has been operating for a long time with a constant feed 
concentration.  The feed composition experiences a step.  
All other variables are constant.  Determine the dynamic 
response of CA.  

(We’ll solve this in class.)

2
AA kCr

BA

=−

→    

F
CA0

VCA

Non-linear! 



MODELLING EXAMPLE 4. N-L CSTR

We solve the linearized model analytically and the non-linear 
numerically.

Deviation variables 
do not change the 
answer, just 
translate the values

In this case, the 
linearized 
approximation is 
close to the 
“exact”non-linear 
solution.



MODELLING EXAMPLE 4. DRAINING TANK

The tank with a drain has a continuous flow in and out.  It 
has achieved initial steady state when a step decrease occurs 
to the flow in.  Determine the level as a function of time.

Solve the non-linear and linearized models.



MODELLING EXAMPLE 4. DRAINING TANK

Small flow change: 
linearized 
approximation is good

Large flow change: 
linearized model is 
poor – the answer is 
physically impossible! 
(Why?)



DYNAMIC MODELLING

We learned first-order systems have the same output “shape”.

forcingor input  the f(t) with   ))]t(f[KY
dt
dY

=+τ

Sample 
response 
to a step 
input 

0 20 40 60 80 100 120

0.8

1

1.2

1.4

1.6

1.8

time

ta
nk

 c
on

ce
nt

ra
tio

n

0 20 40 60 80 100 120
0.5

1

1.5

2

time

in
le

t c
on

ce
nt

ra
tio

n

Maximum
slope at
“t=0”

Output changes immediately

Output is smooth, monotonic curve

At steady state

∆ = K δ

τ

≈ 63% of steady-state ∆

δ = Step in inlet variable



DYNAMIC MODELLING

The emphasis on analytical relationships is directed to 
understanding the key parameters.  In the examples, you 
learned what affected the gain and time constant.  

K: Steady-state Gain

• sign

• magnitude (don’t forget 
the units)

• how depends on design 
(e.g., V) and operation 
(e.g., F)

τ:Time Constant

• sign (positive is stable)

• magnitude (don’t forget 
the units)

• how depends on design 
(e.g., V) and operation 
(e.g., F)



DYNAMIC MODELLING: WORKSHOP 1

F
CA0 VCA

For each of the three processes we modelled, determine how 
the gain and time constant depend on V, F, T and CA0. 

• Mixing tank

• linear CSTR

• CSTR with 
second order 
reaction



DYNAMIC MODELLING: WORKSHOP 2

L

Describe three different level sensors for measuring liquid 
height in the draining tank.  For each, determine whether the 
measurement can be converted to an electronic signal and 
transmitted to a computer for display and control.

I’m getting tired of monitoring
the level.  I wish this could

be automated.



DYNAMIC MODELLING: WORKSHOP 3

F
CA0 VCA

Model the dynamic response of component A (CA) for a 
step change in the inlet flow rate with inlet concentration 
constant.  Consider two systems separately.

• Mixing tank

• CSTR with first order reaction



DYNAMIC MODELLING: WORKSHOP 4

The parameters we use in mathematical models are never 
known exactly.  For several models solved in the textbook, 
evaluate the effect of the solution of errors in parameters.

• ± 20% in reaction rate constant k

• ± 20% in heat transfer coefficient

• ± 5% in flow rate and tank volume

How would you consider errors in several parameters in the 
same problem?

Check your responses by simulating using the MATLAB m-
files in the Software Laboratory.



DYNAMIC MODELLING: WORKSHOP 5

Determine the equations that are solved for the Euler 
numerical solution for the dynamic response of  draining 
tank problem.  Also, give an estimate of a good initial value 
for the integration time step, ∆t, and explain your 
recommendation.



CHAPTER 3 : MATH. MODELLING

• Formulate dynamic models based on 
fundamental balances

• Solve simple first-order linear dynamic 
models

• Determine how key aspects of dynamics 
depend on process design and operation

How are we doing?

Lot’s of improvement, but we need some more study!
• Read the textbook
• Review the notes, especially learning goals and workshop
• Try out the self-study suggestions
• Naturally, we’ll have an assignment!



CHAPTER 3: LEARNING RESOURCES

• SITE PC-EDUCATION WEB 

- Instrumentation Notes

- Interactive Learning Module (Chapter 3)

- Tutorials (Chapter 3)

- M-files in the Software Laboratory (Chapter 3)

• Read the sections on dynamic modelling in previous 
textbooks

- Felder and Rousseau, Fogler, Incropera & Dewitt

• Other textbooks with solved problems

- See the course outline and books on reserve in Thode



CHAPTER 3: 
SUGGESTIONS FOR SELF-STUDY

1.  Discuss why we require that the degrees of freedom for a 
model must be zero.  Are there exceptions?

2.  Give examples of constitutive equations from prior 
chemical engineering courses.  For each, describe how we 
determine the value for the parameter.  How accurate is 
the value?

3.  Prepare one question of each type and share with your 
study group: T/F, multiple choice, and modelling.

4.  Using the MATLAB m-files in the Software Laboratory, 
determine the effect of input step magnitude on linearized 
model accuracy for the CSTR with second-order reaction.



5. For what combination of physical parameters will a first 
order dynamic model predict the following? 

• an oscillatory response to a step input
• an output that increases without limit
• an output that changes very slowly

6.  Prepare a fresh cup of hot coffee or tea.  Measure the 
temperature and record the temperature and time until 
the temperature  approaches ambient.

• Plot the data.  
• Discuss the shape of the temperature plot.  
• Can you describe it by a response by a key parameter?
• Derive a mathematical model and compare with your 

experimental results

CHAPTER 3: 
SUGGESTIONS FOR SELF-STUDY


